IDEAS home Printed from https://ideas.repec.org/p/ags/eaae11/114339.html
   My bibliography  Save this paper

Agriculture and Climate Change: Socially Optimal Production and Land Use

Author

Listed:
  • Ervola, Asta
  • Lankoski, Jussi E.
  • Ollikainen, Markku

Abstract

No abstract is available for this item.

Suggested Citation

  • Ervola, Asta & Lankoski, Jussi E. & Ollikainen, Markku, 2011. "Agriculture and Climate Change: Socially Optimal Production and Land Use," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114339, European Association of Agricultural Economists.
  • Handle: RePEc:ags:eaae11:114339
    DOI: 10.22004/ag.econ.114339
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/114339/files/Ervola_Asta_571.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.114339?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jussi Lankoski & Markku Ollikainen & Pekka Uusitalo, 2006. "No-till technology: benefits to farmers and the environment? Theoretical analysis and application to Finnish agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 33(2), pages 193-221, June.
    2. Jinhua Zhao & Catherine L. Kling & Lyubov A. Kurkalova, 2003. "Alternative Green Payment Policies under Heterogeneity When Multiple Benefits Matter," Center for Agricultural and Rural Development (CARD) Publications 03-wp341, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    3. Antle, John M. & Capalbo, Susan Marie & Mooney, Sian & Elliott, Edward T. & Paustian, Keith H., 2001. "Economic Analysis Of Agricultural Soil Carbon Sequestration: An Integrated Assessment Approach," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 26(2), pages 1-24, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lotjonen, S. & Temmes, E. & Ollikainen, M., 2018. "Spatial model of dairy farm management, nutrient runoff and greenhouse gas emissions: Private and social optima," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277111, International Association of Agricultural Economists.
    2. Bai, Yun & Ouyang, Yanfeng & Pang, Jong-Shi, 2012. "Biofuel supply chain design under competitive agricultural land use and feedstock market equilibrium," Energy Economics, Elsevier, vol. 34(5), pages 1623-1633.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ervola, Asta & Lankoski, Jussi E. & Ollikainen, Markku, 2010. "Mitigation options and policies in agricultural sector: a theoretical model and application," 120th Seminar, September 2-4, 2010, Chania, Crete 109320, European Association of Agricultural Economists.
    2. Soh, Moonwon & Cho, Seong-Hoon & Yu, Edward & Boyer, Christopher & English, Burton, 2018. "Targeting Payments for Ecosystem Services Given Ecological and Economic Objectives," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266502, Southern Agricultural Economics Association.
    3. Heng‐Chi Lee & Bruce A. McCarl & Dhazn Gillig, 2005. "The Dynamic Competitiveness of U.S. Agricultural and Forest Carbon Sequestration," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 53(4), pages 343-357, December.
    4. Cho, Seong-Hoon & Soh, Moonwon & English, Burton C. & Yu, T. Edward & Boyer, Christopher N., 2019. "Targeting payments for forest carbon sequestration given ecological and economic objectives," Forest Policy and Economics, Elsevier, vol. 100(C), pages 214-226.
    5. Tang, Kai & Hailu, Atakelty & Kragt, Marit E. & Ma, Chunbo, 2018. "The response of broadacre mixed crop-livestock farmers to agricultural greenhouse gas abatement incentives," Agricultural Systems, Elsevier, vol. 160(C), pages 11-20.
    6. Lankoski, Jussi E. & Ollikainen, Markku, 2009. "Biofuel policies and the environment: the effects of biofuel feedstock production on climate, water quality and biodiversity," 2009 Conference, August 16-22, 2009, Beijing, China 51677, International Association of Agricultural Economists.
    7. Szulczyk, Kenneth R. & McCarl, Bruce A., 2010. "Market penetration of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2426-2433, October.
    8. de Cara, Stephane & Rozakis, Stelios, 2004. "Carbon sequestration through the planting of multi-annual energy crops: A dynamic and spatial assessment," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 5(1), pages 1-17, January.
    9. Sasaki, Hiroki, 2010. "Relationships between Agricultural policies and Environmental Effects in Japan: An Environmental-Economic Integrated Model Approach," 120th Seminar, September 2-4, 2010, Chania, Crete 109399, European Association of Agricultural Economists.
    10. Tang, Kai & He, Chuantian & Ma, Chunbo & Wang, Dong, 2019. "Does carbon farming provide a cost-effective option to mitigate GHG emissions? Evidence from China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(3), July.
    11. Amy W. Ando & Shibashis Mukherjee, 2012. "Benefits of pollution monitoring technology for greenhouse gas offset markets," Economics Bulletin, AccessEcon, vol. 32(1), pages 122-136.
    12. Marita Laukkanen & Céline Nauges, 2011. "Environmental and Production Cost Impacts of No-till in Finland: Estimates from Observed Behavior," Land Economics, University of Wisconsin Press, vol. 87(3), pages 508-527.
    13. Amrita Chatterjee & Arpita Ghose, 2016. "A dynamic economic model of soil conservation and drought tolerance involving genetically modified crops," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 18(1), pages 40-66, October.
    14. Szulczyk, Kenneth R. & McCarl, Bruce A. & Cornforth, Gerald, 2010. "Market penetration of ethanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 394-403, January.
    15. Feng, Hongli & Kurkalova, Lyubov A. & Kling, Catherine L. & Gassman, Philip W., 2006. "Environmental conservation in agriculture: Land retirement vs. changing practices on working land," Journal of Environmental Economics and Management, Elsevier, vol. 52(2), pages 600-614, September.
    16. Fulton, Murray E. & Cule, Monika & Weersink, Alfons, 2005. "Greenhouse Gas Policy and Canadian Agriculture," CAFRI: Current Agriculture, Food and Resource Issues, Canadian Agricultural Economics Society, issue 6, pages 1-11, January.
    17. Lankoski, Jussi, 2013. "Counterfactual approach for assessing agri-environmental policy: The case of the Finnish water protection policy," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 94(2).
    18. Sanna Lötjönen & Markku Ollikainen, 2017. "Does crop rotation with legumes provide an efficient means to reduce nutrient loads and GHG emissions?," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(4), pages 283-312, December.
    19. van der Werf, E.H., 2008. "Climate policy and economic dynamics : The role of substitution and technological change," Other publications TiSEM 2882225b-06fa-4c35-9261-5, Tilburg University, School of Economics and Management.
    20. Hartell, Jason G., 2004. "Pricing Benefit Externalities of Soil Carbon Sequestration in Multifunctional Agriculture," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 36(2), pages 1-15, August.

    More about this item

    Keywords

    Land Economics/Use;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:eaae11:114339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.