IDEAS home Printed from https://ideas.repec.org/p/ags/eaa123/122443.html
   My bibliography  Save this paper

Catastrophic crop insurance effectiveness: does it make a difference how yield losses are conditioned?

Author

Listed:
  • Bokusheva, Raushan
  • Conradt, Sarah

Abstract

The study evaluates the effectiveness of a catastrophic drought-index insurance developed by applying two alternative methods - the standard regression analysis and the copula approach. Most empirical analyses obtain estimates of the dependence of crop yields on weather by employing linear regression. By doing so, they assume that the sensitivity of yields to weather remains constant over the whole distribution of the weather variable and can be captured by the effect of the weather index on the yield conditional mean. In our study we evaluate, whether the prediction of farm yield losses can be done more accurately by conditioning yields on extreme realisations of a weather index. Therefore, we model the dependence structure between yields and weather by employing the copula approach. Our preliminary results suggests that the use of copulas might be a more adequate way to design and rate weather-based insurance against extreme events.

Suggested Citation

  • Bokusheva, Raushan & Conradt, Sarah, 2012. "Catastrophic crop insurance effectiveness: does it make a difference how yield losses are conditioned?," 123rd Seminar, February 23-24, 2012, Dublin, Ireland 122443, European Association of Agricultural Economists.
  • Handle: RePEc:ags:eaa123:122443
    DOI: 10.22004/ag.econ.122443
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/122443/files/Bokusheva.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.122443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    2. Raushan Bokusheva, 2011. "Measuring dependence in joint distributions of yield and weather variables," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 71(1), pages 120-141, May.
    3. Conradt, Sarah & Bokusheva, Raushan & Finger, Robert & Kussaiynov, Talgat, 2012. "Yield trend estimation in the presence of non-constant technological change and weather effects," 123rd Seminar, February 23-24, 2012, Dublin, Ireland 122541, European Association of Agricultural Economists.
    4. Raushan Bokusheva, 2011. "Measuring dependence in joint distributions of yield and weather variables," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 71(1), pages 120-141, May.
    5. Jerry R. Skees & J. Roy Black & Barry J. Barnett, 1997. "Designing and Rating an Area Yield Crop Insurance Contract," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(2), pages 430-438.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bokusheva, Raushan, 2014. "Improving the Effectiveness of Weather-based Insurance: An Application of Copula Approach," MPRA Paper 62339, University Library of Munich, Germany.
    2. Wienand Kölle & Andrea Martínez Salgueiro & Matthias Buchholz & Oliver Musshoff, 2021. "Can satellite‐based weather index insurance improve the hedging of yield risk of perennial non‐irrigated olive trees in Spain?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(1), pages 66-93, January.
    3. Sehgal, Sanjay & Pandey, Piyush & Diesting, Florent, 2017. "Examining dynamic currency linkages amongst South Asian economies: An empirical study," Research in International Business and Finance, Elsevier, vol. 42(C), pages 173-190.
    4. Jie Huang & Haiming Zhou & Nader Ebrahimi, 2022. "Bayesian Bivariate Cure Rate Models Using Copula Functions," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(3), pages 1-9, May.
    5. Andres Mauricio Molina Barreto & Naoyuki Ishimura, 2023. "Remarks on a copula‐based conditional value at risk for the portfolio problem," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 30(3), pages 150-170, July.
    6. Daniel Puig & Oswaldo Morales-Nápoles & Fatemeh Bakhtiari & Gissela Landa, 2017. "The accountability imperative for quantifiying the uncertainty of emission forecasts : evidence from Mexico," Working Papers hal-03389325, HAL.
    7. Richard C. Bradley & Richard A. Davis & Dimitris N. Politis, 2021. "Preface to the Murray Rosenblatt memorial special issue of JTSA," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 495-498, September.
    8. Samane Al-sadat Mousavi & Ali Dolati & Ali Dastbaravarde, 2024. "Some Results on Bivariate Squared Maximum Sharpe Ratio," Risks, MDPI, vol. 12(6), pages 1-17, May.
    9. Krogmeier, Joseph L. & Wang, H. Holly, 1998. "The Possibility Of A Private Crop Insurance Market: The Theoretical Foundations," 1998 Annual meeting, August 2-5, Salt Lake City, UT 20902, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Jose Arreola Hernandez & Shawkat Hammoudeh & Duc Khuong Nguyen & Mazin A. M. Al Janabi & Juan Carlos Reboredo, 2017. "Global financial crisis and dependence risk analysis of sector portfolios: a vine copula approach," Applied Economics, Taylor & Francis Journals, vol. 49(25), pages 2409-2427, May.
    11. Kapphan, Ines, 2011. "Weather insurance design with optimal hedging effectiveness," MPRA Paper 35861, University Library of Munich, Germany.
    12. Bedoui, Rihab & Braiek, Sana & Guesmi, Khaled & Chevallier, Julien, 2019. "On the conditional dependence structure between oil, gold and USD exchange rates: Nested copula based GJR-GARCH model," Energy Economics, Elsevier, vol. 80(C), pages 876-889.
    13. Gaißer, Sandra & Schmid, Friedrich, 2010. "On testing equality of pairwise rank correlations in a multivariate random vector," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2598-2615, November.
    14. Nejc Bezak & Matjaž Mikoš & Mojca Šraj, 2014. "Trivariate Frequency Analyses of Peak Discharge, Hydrograph Volume and Suspended Sediment Concentration Data Using Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2195-2212, June.
    15. Skees, Jerry R. & Harwood, Joy L. & Somwaru, Agapi & Perry, Janet E., 1998. "The Potential For Revenue Insurance Policies In The South," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 30(1), pages 1-15, July.
    16. Deng, Xiaohui & Barnett, Barry J. & Hoogenboom, Gerrit & Yu, Yingzhuo & Garcia, Axel Garcia y, 2008. "Alternative Crop Insurance Indexes," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 40(1), pages 223-237, April.
    17. Barnett, Barry J. & Barrett, Christopher B. & Skees, Jerry R., 2008. "Poverty Traps and Index-Based Risk Transfer Products," World Development, Elsevier, vol. 36(10), pages 1766-1785, October.
    18. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
    19. Catherine Bruneau & Alexis Flageollet & Zhun Peng, 2020. "Economic and financial risk factors, copula dependence and risk sensitivity of large multi-asset class portfolios," Annals of Operations Research, Springer, vol. 284(1), pages 165-197, January.
    20. Okhrin, Ostap & Ristig, Alexander, 2014. "Hierarchical Archimedean Copulae: The HAC Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i04).

    More about this item

    Keywords

    Risk and Uncertainty;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:eaa123:122443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.