IDEAS home Printed from https://ideas.repec.org/p/ags/eaa109/44782.html
   My bibliography  Save this paper

The Abrogation Of Set Aside And The Increase Of Cereal Prices: Can They Revert The Decline Of Cereal Production Generated By Decoupling?

Author

Listed:
  • Severini, Simone
  • Valle, Stefano

Abstract

The decoupling of direct payments, caused by the introduction of the Single Payment Scheme (SPS), has generated an incentive for farmers to decrease the production of cereals, oilseeds and protein crops (COP) and (because of the reform of sugar CMO) sugar beet. In some cases, this has also provided a strong enough incentive for farmers to let some of the available land uncultivated in the years immediately following the introduction of the SPS. However, in the last few years, cereal prices have sharply increased under the pressure of a growing world demand. Under this situation, the EU Commission has abrogated the set aside requirement allowing the cultivation on idle land. In this way the Commission intends to allow EU farmers to take advantage of the new market conditions and to stabilise cereal market. This paper aims at assessing how much the abrogation of set aside requirement can be effective in increasing cereal production. This is not a trivial question given that in some farms the introduction of SPS has also resulted in some of the land previously cultivated (i.e. not set aside) to be left uncultivated. Under this circumstance, the set aside constraint could be not binding and, therefore, its abrogation may not result in an increase of production. The second aim of the paper is to evaluate to what extent increases of cereal prices could foster cereal production and reduce the amount of uncultivated land. The analysis has been carried out on a sample of FADN farms of three study areas located in two regions of Italy (Emilia Romagna and Veneto) using Positive Mathematical Programming (PMP) models. The analysis has shown that the decoupling of direct payments generates a not negligible decrease of COP production and pushes some farmers to let a limited amount of land uncultivated. Therefore, the abrogation of set aside requirement per-se increases cereal production, but this increase is not in all cases very relevant. The increases of cereal prices could be more effective than the abrogation of set aside requirement in increasing cereal production. The combination of both considered factors is expected to revert the decline of cereal production experienced in the considered farms after the introduction of the SPS even if the magnitude of this effect is strongly affected by the level of cereal prices.

Suggested Citation

  • Severini, Simone & Valle, Stefano, 2008. "The Abrogation Of Set Aside And The Increase Of Cereal Prices: Can They Revert The Decline Of Cereal Production Generated By Decoupling?," 109th Seminar, November 20-21, 2008, Viterbo, Italy 44782, European Association of Agricultural Economists.
  • Handle: RePEc:ags:eaa109:44782
    DOI: 10.22004/ag.econ.44782
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/44782/files/A087_Severini%20Valle.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.44782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeroen Buysse & Bruno Fernagut & Olivier Harmignie & Bruno Henry de Frahan & Ludwig Lauwers & Philippe Polomé & Guido Van Huylenbroeck & Jef Van Meensel, 2007. "Farm-based modelling of the EU sugar reform: impact on Belgian sugar beet suppliers," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 34(1), pages 21-52, March.
    2. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    3. Golan, Amos & Judge, George G. & Miller, Douglas, 1996. "Maximum Entropy Econometrics," Staff General Research Papers Archive 1488, Iowa State University, Department of Economics.
    4. Quirino Paris & Richard E. Howitt, 1998. "An Analysis of Ill-Posed Production Problems Using Maximum Entropy," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 124-138.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arfini, Filippo & Donati, Michele & Paris, Quirino, 2008. "Innovation in Estimation of Revenue and Cost Functions in PMP Using FADN Information at Regional Level," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44008, European Association of Agricultural Economists.
    2. Msangi, Siwa & Howitt, Richard E., 2006. "Estimating Disaggregate Production Functions: An Application to Northern Mexico," 2006 Annual meeting, July 23-26, Long Beach, CA 21080, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Kamel Louhichi & Hugo Valin, 2012. "Impact of EU biofuel policies on the French arable sector: A micro-level analysis using global market and farm-based supply models," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement, INRA Department of Economics, vol. 93(3), pages 233-272.
    4. Gocht, Alexander, 2005. "Assessment of Simulation Behavior of Different Mathematical Programming Approaches," 89th Seminar, February 2-5, 2005, Parma, Italy 232598, European Association of Agricultural Economists.
    5. Filippo Arfini & Cristina Brasili & Roberto Fanfani & Mario Mazzocchi & Elisa Montresor & Quirino Paris, 2001. "Tools for evaluating EU agricultural policies: An integrated approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 10(1), pages 191-210, January.
    6. Wolfgang Britz & Linda Arata, 2019. "Econometric mathematical programming: an application to the estimation of costs and risk preferences at farm level," Agricultural Economics, International Association of Agricultural Economists, vol. 50(2), pages 191-206, March.
    7. Takahiro Nakashima & Shoko Ishikawa, 2022. "Exploring Farmers’ Expectation toward Farm-Gate Price of Rice in Japan by Positive Mathematical Programming," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    8. Arfini, Filippo & Donati, Michele & Marongiu, Sonia & Cesaro, Luca, 2012. "Farm production costs estimation trough PMP Models: an application in three Italian Regions," 2012 First Congress, June 4-5, 2012, Trento, Italy 124117, Italian Association of Agricultural and Applied Economics (AIEAA).
    9. Mugurel Ionel JITEA & Diana Elena DUMITRAȘ & Vasile Alexandru SIMU, 2015. "An ex-ante impact assessment of the Common Agricultural Policy reform in the North-Western Romania," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 61(2), pages 88-103.
    10. Polome, Philippe & Fernagut, Bruno & Harmignie, Olivier & Frahan, Bruno Henry de, 2005. "Multi-input Multi-output Farm-level Cost Function: A Comparison of Least Squares and Entropy Estimators," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24727, European Association of Agricultural Economists.
    11. Solazzo, Roberto & Pierangeli, Fabio, 2016. "How does greening affect farm behaviour? Trade-off between commitments and sanctions in the Northern Italy," Agricultural Systems, Elsevier, vol. 149(C), pages 88-98.
    12. Arfini, Filippo & Donati, Michele & Grossi, L. & Paris, Quirino, 2008. "Revenue and Cost Functions in PMP: a Methodological Integration for a Territorial Analysis of CAP," 107th Seminar, January 30-February 1, 2008, Sevilla, Spain 6636, European Association of Agricultural Economists.
    13. Affuso, Ermanno & Hite, Diane, 2013. "A model for sustainable land use in biofuel production: An application to the state of Alabama," Energy Economics, Elsevier, vol. 37(C), pages 29-39.
    14. Heckelei, Thomas & Britz, Wolfgang, 2005. "Models Based on Positive Mathematical Programming: State of the Art and Further Extensions," 89th Seminar, February 2-5, 2005, Parma, Italy 234607, European Association of Agricultural Economists.
    15. Eruygur, H.O. & Cakmak, Erol H., 2008. "EU Integration of Turkey: Implications for Turkish Agriculture," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44213, European Association of Agricultural Economists.
    16. Louhichi, Kamel & Gomez y Paloma, Sergio, 2014. "A farm household model for agri-food policy analysis in developing countries: Application to smallholder farmers in Sierra Leone," Food Policy, Elsevier, vol. 45(C), pages 1-13.
    17. Cortignani, Raffaele & Severini, Simone, 2010. "The impact of reforming the Common Agricultural Policy on the sustainability of the irrigated area of Central Italy. An empirical assessment by means of a Positive Mathematical Programming model," 120th Seminar, September 2-4, 2010, Chania, Crete 109318, European Association of Agricultural Economists.
    18. Heckelei, T. & Wolff, H., 2001. "Ansätze zur (Auf-)Lösung eines alten Methodenstreits: Ökonometrische Spezifikation von Programmierungsmodellen zur Agrarangebotsanalyse," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 37.
    19. Heckelei, Thomas & Britz, Wolfgang & Zhang, Yinan, 2012. "Positive Mathematical Programming Approaches – Recent Developments in Literature and Applied Modelling," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(1), pages 1-16, April.
    20. Howitt, Richard E. & Msangi, Siwa, 2002. "Reconstructing Disaggregate Production Functions," 2002 Annual meeting, July 28-31, Long Beach, CA 19585, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:eaa109:44782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.