IDEAS home Printed from https://ideas.repec.org/p/ags/cudawp/127903.html
   My bibliography  Save this paper

Old-Growth Forest and Jobs

Author

Listed:
  • Conrad, Jon M.

Abstract

An optimal control model is constructed where the cutting of old-growth forest generates jobs and adds to the stock of land devoted to "newgrowth," rotational forestry. Welfare is determined by the number of jobs in the forest economy and the stock of old-growth forest, which provides "nontimber" benefits. Starting from a large inventory, the economy needs to determine when it is optimal to stop cutting old-growth forest and preserve what's left. When the economy stops cutting old growth it reaches a steady state where the number of jobs is based on the harvest of timber from new-growth forest. An inventory rule is derived for a general model. For plausable functional forms this rule implies and explicit solution for the optimal inventory of old-growth forest. The specific model is estimated for the Douglas fir region of western Washington and Oregon, where perhaps 17.5 percent of the pre-logging stock of old-growth remains. Estimates of the marginal social value for the remaining stock of old growth range from $2,089 to $7,173 per hectare, depending on the rate of discount. These values should be interpreted as "hurdle values." If a direct valuation method, such as contingent valuation, reveals that the "true" marginal social value is likely to exceed these values, then all remaining old-growth outside the National Parks should be preserved.

Suggested Citation

  • Conrad, Jon M., 1996. "Old-Growth Forest and Jobs," Working Papers 127903, Cornell University, Department of Applied Economics and Management.
  • Handle: RePEc:ags:cudawp:127903
    DOI: 10.22004/ag.econ.127903
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/127903/files/Cornell_Dyson_wp9608.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.127903?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Samuelson, Paul A, 1976. "Economics of Forestry in an Evolving Society," Economic Inquiry, Western Economic Association International, vol. 14(4), pages 466-492, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Abdallah, Skander & Lasserre, Pierre, 2016. "Asset retirement with infinitely repeated alternative replacements: Harvest age and species choice in forestry," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 144-164.
    2. Navarrete, Eduardo, 2012. "Modeling optimal pine stands harvest under stochastic wood stock and price in Chile," Forest Policy and Economics, Elsevier, vol. 15(C), pages 54-59.
    3. Sinha, Ankur & Rämö, Janne & Malo, Pekka & Kallio, Markku & Tahvonen, Olli, 2017. "Optimal management of naturally regenerating uneven-aged forests," European Journal of Operational Research, Elsevier, vol. 256(3), pages 886-900.
    4. M. Ali Khan & Adriana Piazza, 2010. "On uniform convergence of undiscounted optimal programs in the Mitra–Wan forestry model: The strictly concave case," International Journal of Economic Theory, The International Society for Economic Theory, vol. 6(1), pages 57-76, March.
    5. Yuri Biondi, 2009. "Capital budgeting under relational contracting: optimal ranking and duration criteria for schemes of concession, project-financing and public-private partnership," Post-Print hal-00404305, HAL.
    6. Nguyen, Trung Thanh & Nghiem, Nhung, 2016. "Optimal forest rotation for carbon sequestration and biodiversity conservation by farm income levels," Forest Policy and Economics, Elsevier, vol. 73(C), pages 185-194.
    7. Todorova, Tamara, 2013. "Solving optimal timing problems elegantly," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 4(6), pages 95-105.
    8. Couture, Stéphane & Reynaud, Arnaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Ecological Economics, Elsevier, vol. 70(11), pages 2002-2011, September.
    9. Tahvonen, Olli, 2016. "Economics of rotation and thinning revisited: the optimality of clearcuts versus continuous cover forestry," Forest Policy and Economics, Elsevier, vol. 62(C), pages 88-94.
    10. Morag F. Macpherson & Adam Kleczkowski & John Healey & Nick Hanley, 2015. "When to harvest? The effect of disease on optimal forest rotation," Discussion Papers in Environment and Development Economics 2015-19, University of St. Andrews, School of Geography and Sustainable Development.
    11. Ali Khan, M. & Piazza, Adriana, 2012. "On the Mitra–Wan forestry model: A unified analysis," Journal of Economic Theory, Elsevier, vol. 147(1), pages 230-260.
    12. Mario E Niklitschek & Eugenio Bobenrieth, 1992. "Incentivos Económicos para una Explotación Eficiente del Bosque," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 29(88), pages 463-480.
    13. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    14. Xu, Ying & Amacher, Gregory S. & Sullivan, Jay, 2016. "Optimal forest management with sequential disturbances," Journal of Forest Economics, Elsevier, vol. 24(C), pages 106-122.
    15. Asante, Patrick & Armstrong, Glen W. & Adamowicz, Wiktor L., 2011. "Carbon sequestration and the optimal forest harvest decision: A dynamic programming approach considering biomass and dead organic matter," Journal of Forest Economics, Elsevier, vol. 17(1), pages 3-17, January.
    16. Tahvonen, Olli & Salo, Seppo & Kuuluvainen, Jari, 2001. "Optimal forest rotation and land values under a borrowing constraint," Journal of Economic Dynamics and Control, Elsevier, vol. 25(10), pages 1595-1627, October.
    17. Gardner Brown, 2000. "Renewable Natural Resource Management and Use Without Markets," Working Papers 0025, University of Washington, Department of Economics.
    18. Caparros, Alejandro & Jacquemont, Frederic, 2003. "Conflicts between biodiversity and carbon sequestration programs: economic and legal implications," Ecological Economics, Elsevier, vol. 46(1), pages 143-157, August.
    19. Creamer, Selmin F. & Genz, Alan & Blatner, Keith A., 2012. "The Effect of Fire Risk on the Critical Harvesting Times for Pacific Northwest Douglas-Fir When Carbon Price Is Stochastic," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 41(3), pages 1-14, December.
    20. Viitala, Esa-Jussi, 2016. "Faustmann formula before Faustmann in German territorial states," Forest Policy and Economics, Elsevier, vol. 65(C), pages 47-58.

    More about this item

    Keywords

    Resource /Energy Economics and Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:cudawp:127903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/dacorus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.