IDEAS home Printed from https://ideas.repec.org/p/ags/aesc23/334558.html
   My bibliography  Save this paper

Technical Efficiency in Organic and Conventional Wheat Farms: Evidence from a Primary Survey from Two Districts of Ganga River Basin, India

Author

Listed:
  • Singh, S.P.
  • Sajwan, Priya
  • Sajwan, Komal

Abstract

This paper analyses the technical efficiency of wheat farms operating under organic and conventional farming systems. The study is based on a primary survey of 579 farms (294 organic and 285 conventional) conducted in 2021 in two districts located in the Middle Ganga River Basin, India. Technical, managerial, and scale efficiencies of individual farms are estimated by applying Data Envelopment Analysis (DEA). The per hectare value of wheat production is taken as an output variable, and values of seeds, human labour, machine cost, plant nutrients, farm yard manure (FYM), plant protection, and irrigation charges are considered input variables for estimating the farm-level efficiencies. The post-DEA analysis is conducted using the Tobit regression to determine the efficiency factors. The results show that technical efficiency is significantly higher in conventional than organic farming systems due to a higher gap in scale efficiency than managerial efficiency. Further, 9.8% of conventional and only 1.0% of organic farms operate at the Most Productive Scale Size (MPSS), and 99% of organic and 81% of conventional farms at IRS. Organic farms perform well in managerial efficiency, but their technical efficiency is lower than conventional farms, mainly due to their relatively lower scale size. The paper suggests that technical efficiency in organic wheat farms can be increased by upscaling the farm size by incentivizing group/collective farming in clusters.

Suggested Citation

  • Singh, S.P. & Sajwan, Priya & Sajwan, Komal, 2023. "Technical Efficiency in Organic and Conventional Wheat Farms: Evidence from a Primary Survey from Two Districts of Ganga River Basin, India," 97th Annual Conference, March 27-29, 2023, Warwick University, Coventry, UK 334558, Agricultural Economics Society - AES.
  • Handle: RePEc:ags:aesc23:334558
    DOI: 10.22004/ag.econ.334558
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/334558/files/AES2023_TechnicalEfficiency.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.334558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Salhofer, Klaus & Kargiannis, Giannis & Sinabell, Franz, 2012. "Scale Efficiency in Organic and Conventional Dairy Farming," 2012 First Congress, June 4-5, 2012, Trento, Italy 124119, Italian Association of Agricultural and Applied Economics (AIEAA).
    2. Madau, Fabio A., 2007. "Technical Efficiency in Organic and Conventional Farming: Evidence from Italian Cereal Farms," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 8(1), pages 1-17, January.
    3. Subal Kumbhakar & Efthymios Tsionas & Timo Sipiläinen, 2009. "Joint estimation of technology choice and technical efficiency: an application to organic and conventional dairy farming," Journal of Productivity Analysis, Springer, vol. 31(3), pages 151-161, June.
    4. Maria Raimondo & Francesco Caracciolo & Concetta Nazzaro & Giuseppe Marotta, 2021. "Organic Farming Increases the Technical Efficiency of Olive Farms in Italy," Agriculture, MDPI, vol. 11(3), pages 1-15, March.
    5. Charyulu Kumara D. & Biswas, Subho, 2010. "Economics and Efficiency of Organic Farming vis-à-vis Conventional Farming in India," IIMA Working Papers WP2010-04-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    6. Larsen, Karin & Foster, Kenneth A., 2005. "Technical Efficiency among Organic and Conventional Farms in Sweden 2000-2002: A Counterfactual and Self-Selection Analysis," 2005 Annual meeting, July 24-27, Providence, RI 19219, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    7. Shenggen Fan, 2000. "Technological change, technical and allocative efficiency in Chinese agriculture: the case of rice production in Jiangsu," Journal of International Development, John Wiley & Sons, Ltd., vol. 12(1), pages 1-12.
    8. D. Kumara Charyulu & Subho Biswas, 2010. "Economics and Efficiency of Organic Farming vis-Ã -vis Conventional Farming in India," Working Papers id:2497, eSocialSciences.
    9. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    10. Goyal, S.K. & Suhag, K.S., 2003. "Estimation of Technical Efficiency on Wheat Farms in Northern India - A Panel Data Analysis," 14th Congress, Perth, Western Australia, August 10-15, 2003 24305, International Farm Management Association.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Djokoto, Justice G., 2015. "Technical efficiency of organic agriculture: a quantitative review," Studies in Agricultural Economics, Research Institute for Agricultural Economics, vol. 117(2), pages 1-11, August.
    2. Lakner, Sebastian & Breustedt, Gunnar, 2015. "Efficiency analysis of organic farming systems- a review of methods, topics, results, and conclusions," 2015 Conference, August 9-14, 2015, Milan, Italy 212025, International Association of Agricultural Economists.
    3. Moritz Flubacher & George Sheldon & Adrian Müller, 2015. "Comparison of the Economic Performance between Organic and Conventional Dairy Farms in the Swiss Mountain Region Using Matching and Stochastic Frontier Analysis," Journal of Socio-Economics in Agriculture (Until 2015: Yearbook of Socioeconomics in Agriculture), Swiss Society for Agricultural Economics and Rural Sociology, vol. 7(1), pages 76-84.
    4. Radha R. Ashrit, 2023. "Estimation of technical efficiency of Indian farms for major crops during 2013–2014 and 2017–2018: a stochastic Frontier production approach," SN Business & Economics, Springer, vol. 3(2), pages 1-32, February.
    5. Spiegel, Alisa & Coletta, Attilio & Severini, Simone, 2022. "The distortive effect of organic payments: An example of policy failure in the case of hazelnut plantation," Land Use Policy, Elsevier, vol. 119(C).
    6. Basurto Hernandez, Saul & Maddison, David & Banerjee, Anindya, 2018. "The effect of PROCAMPO on farms’ technical efficiency: A Stochastic Frontier Analysis," 2018 Annual Meeting, August 5-7, Washington, D.C. 274376, Agricultural and Applied Economics Association.
    7. Malabayabas, Maria Luz L. & Mishra, Ashok K. & Mayorga, Joaquin, 2023. "Spouses' Access to Financial Services: Estimating Technological and Managerial Gaps in Production," IZA Discussion Papers 16578, Institute of Labor Economics (IZA).
    8. Bouali Guesmi & Teresa Serra & Amr Radwan & José María Gil, 2018. "Efficiency of Egyptian organic agriculture: A local maximum likelihood approach," Agribusiness, John Wiley & Sons, Ltd., vol. 34(2), pages 441-455, March.
    9. Madau, Fabio A., 2011. "Parametric Estimation of Technical and Scale Efficiencies in Italian Citrus Farming," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 12(1).
    10. Madau, Fabio A., 2012. "Technical and scale efficiency in the Italian Citrus Farming: A comparison between Stochastic Frontier Analysis (SFA) and Data Envelopment Analysis(DEA) Models," MPRA Paper 41403, University Library of Munich, Germany.
    11. Carter, Colin A. & Estrin, Andrew J., 2001. "Market Reforms Versus Structural Reforms in Rural China," Journal of Comparative Economics, Elsevier, vol. 29(3), pages 527-541, September.
    12. Karthikeyan Mariappan & Deyi Zhou, 2019. "A Threat of Farmers’ Suicide and the Opportunity in Organic Farming for Sustainable Agricultural Development in India," Sustainability, MDPI, vol. 11(8), pages 1-17, April.
    13. Ivana Brožová & Jiří Vaněk, 2013. "Assessment of economic efficiency of conventional and organic agricultural enterprises in a chosen region," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 61(2), pages 297-307.
    14. Phu Nguyen-Van & Nguyen To-The, 2016. "Technical efficiency and agricultural policy: evidence from the tea production in Vietnam," Review of Agricultural, Food and Environmental Studies, Springer, vol. 97(3), pages 173-184, November.
    15. Latruffe, Laure & Nauges, Celine, 2010. "Converting to organic farming in France: Is there a selection problem?," 120th Seminar, September 2-4, 2010, Chania, Crete 109386, European Association of Agricultural Economists.
    16. Nigel Key & William D. McBride, 2014. "Sub-therapeutic Antibiotics and the Efficiency of U.S. Hog Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(3), pages 831-850.
    17. Won-Sik Hwang & Ho-Sung Kim, 2022. "Does the adoption of emerging technologies improve technical efficiency? Evidence from Korean manufacturing SMEs," Small Business Economics, Springer, vol. 59(2), pages 627-643, August.
    18. Guesmi, Bouali & Serra, Teresa & Radwan, Amr & Gil, José María, 2014. "Efficiency of Egyptian Organic Agriculture: a Local Maximum Likelihood Approach," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 183023, European Association of Agricultural Economists.
    19. Galluzzo Nicola, 2020. "A Technical Efficiency Analysis of Financial Subsidies Allocated by the Cap in Romanian Farms Using Stochastic Frontier Analysis," European Countryside, Sciendo, vol. 12(4), pages 494-505, December.
    20. Fertő, Imre & Baráth, Lajos, 2013. "Heterogenitás és technikai hatékonyság - a magyar specializált szántóföldi növénytermesztő üzemek esete [Heterogeneity and technical efficiency - the case of Hungarys specialized arable crop produc," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(6), pages 650-669.

    More about this item

    Keywords

    Productivity Analysis; Farm Management;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aesc23:334558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aesukea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.