IDEAS home Printed from https://ideas.repec.org/p/ags/aaea22/344018.html
   My bibliography  Save this paper

The Impact of Drought on Farmland Values through a Hedonic Price Analysis of Farmland Transactions in Contiguous US

Author

Listed:
  • Melkani, Aakanksha
  • Mieno, Taro
  • Hrozencik, Robert A.
  • Rimsaite, Renata
  • Brozovic, Nick

Abstract

No abstract is available for this item.

Suggested Citation

  • Melkani, Aakanksha & Mieno, Taro & Hrozencik, Robert A. & Rimsaite, Renata & Brozovic, Nick, 2024. "The Impact of Drought on Farmland Values through a Hedonic Price Analysis of Farmland Transactions in Contiguous US," 2024 Annual Meeting, July 28-30, New Orleans, LA 344018, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea22:344018
    DOI: 10.22004/ag.econ.344018
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/344018/files/29243.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.344018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel P. Bigelow & Jennifer Ifft & Todd Kuethe, 2020. "Following the Market? Hedonic Farmland Valuation Using Sales Prices versus Self-reported Values," Land Economics, University of Wisconsin Press, vol. 96(3), pages 418-440.
    2. Richard Hornbeck & Pinar Keskin, 2014. "The Historically Evolving Impact of the Ogallala Aquifer: Agricultural Adaptation to Groundwater and Drought," American Economic Journal: Applied Economics, American Economic Association, vol. 6(1), pages 190-219, January.
    3. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    4. Yusuke Kuwayama & Alexandra Thompson & Richard Bernknopf & Benjamin Zaitchik & Peter Vail, 2019. "Estimating the Impact of Drought on Agriculture Using the U.S. Drought Monitor," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(1), pages 193-210.
    5. Olivier Deschênes & Michael Greenstone, 2012. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Reply," American Economic Review, American Economic Association, vol. 102(7), pages 3761-3773, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bertone Oehninger, Ernst & Lin Lawell, C.-Y. Cynthia & Sanchirico, James & Springborn, Michael, 2016. "The effects of climate change on groundwater extraction for agriculture and land-use change," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235724, Agricultural and Applied Economics Association.
    2. Queiroz, Pedro & Mariano, Denis, 2020. "The effect of remote sensing drought indicators on agricultural yield: Evidence from Southern Brazil," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304557, Agricultural and Applied Economics Association.
    3. Zhang, Hongliang & Antle, John, 2016. "Assessing Climate Vulnerability of Agricultural Systems Using High-order moments: A Case Study in the U.S. Pacific Northwest," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236233, Agricultural and Applied Economics Association.
    4. Hongliang Zhang & John M. Antle, 2018. "Weather, Climate and Production Risk," IRENE Working Papers 18-01, IRENE Institute of Economic Research.
    5. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    6. Cai, Qingyin & Çakır, Metin & Beatty, Timothy & Park, Timothy A., 2022. "Drought and the Specialty Crops Production in California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322530, Agricultural and Applied Economics Association.
    7. Chau Trinh Nguyen & Frank Scrimgeour, 2022. "Measuring the impact of climate change on agriculture in Vietnam: A panel Ricardian analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 53(1), pages 37-51, January.
    8. Xun Su & Minpeng Chen, 2022. "Econometric Approaches That Consider Farmers’ Adaptation in Estimating the Impacts of Climate Change on Agriculture: A Review," Sustainability, MDPI, vol. 14(21), pages 1-23, October.
    9. Feriga, Moustafa & Lozano Gracia, Nancy & Serneels, Pieter, 2024. "The Impact of Climate Change on Work Lessons for Developing Countries," IZA Discussion Papers 16914, Institute of Labor Economics (IZA).
    10. Kulkarni, Kedar, 2021. "Quantifying Vulnerability of Crop Yields in India to Weather Extremes," 2021 Annual Meeting, August 1-3, Austin, Texas 313879, Agricultural and Applied Economics Association.
    11. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    12. Mu, Jianhong E. & Mihiar, Christopher & Lewis, David J. & Sleeter, Benjamin & Abatzoglou, John T., 2016. "An Empirical Analysis of Climate Uncertainty and Land-use Transitions in the U.S. Pacific and Mountain Regions," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236643, Agricultural and Applied Economics Association.
    13. Jianhong E. Mu & Benjamin M. Sleeter & John T. Abatzoglou & John M. Antle, 2017. "Climate impacts on agricultural land use in the USA: the role of socio-economic scenarios," Climatic Change, Springer, vol. 144(2), pages 329-345, September.
    14. DePaula, Guilherme, 2020. "The distributional effect of climate change on agriculture: Evidence from a Ricardian quantile analysis of Brazilian census data," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    15. Ariel Ortiz‐Bobea, 2020. "The Role of Nonfarm Influences in Ricardian Estimates of Climate Change Impacts on US Agriculture," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 934-959, May.
    16. Jarrett, Uchechukwu & Miller, Steve & Mohtadi, Hamid, 2023. "Dry spells and global crop production: A multi-stressor and multi-timescale analysis," Ecological Economics, Elsevier, vol. 203(C).
    17. Charles A. Taylor, 2022. "Irrigation and Climate Change: Long-Run Adaptation and Its Externalities," NBER Chapters, in: Economic Perspectives on Water Resources, Climate Change, and Agricultural Sustainability, National Bureau of Economic Research, Inc.
    18. Cortney Cowley & Jacob Dice & David Rodziewicz, 2023. "Drought and Cattle: Implications for Ranchers," Research Working Paper RWP 23-06, Federal Reserve Bank of Kansas City.
    19. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    20. Olivier Deschenes & Kyle C. Meng, 2018. "Quasi-Experimental Methods in Environmental Economics: Opportunities and Challenges," NBER Working Papers 24903, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Environmental Economics And Policy; Agricultural And Food Policy; Land Economics/Use;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea22:344018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.