IDEAS home Printed from https://ideas.repec.org/p/ags/aaea16/236216.html
   My bibliography  Save this paper

Water in the Balance: The Impact of Water Infrastructure on Agricultural Adaptation to Rainfall Shocks in India

Author

Listed:
  • Zaveri, Esha
  • Wrenn, Douglas H.
  • Fisher-Vanden, Karen

Abstract

Investments in water infrastructure remain key to climate change adaptation plans in many countries, and rank high in adaptation costs for developing countries (Narain et al., 2011). In this paper, we use district-level panel data from 1970-2005 across India’s major agricultural states to investigate the role played by subsidized access to electricity, groundwater wells, tank and dam projects in mediating the vulnerabilities associated with monsoonal variation. We focus on wheat, a staple of India’s food supply, as it requires irrigation and represents a significant portion of India’s total agricultural output. Results show that the impact of negative precipitation shocks is significantly dampened when a particular district has access to a more reliable source of irrigation – e.g., access to tubewells helps to dampen the impact of negative precipitation shocks on irrigation decisions associated with wheat, while upstream dams do not significantly contribute to this dampening effect. In contrast, having access to dugwells exacerbates the impact of a fall in monsoon precipitation curtailing irrigation of wheat. Our results suggest that historical agricultural policies that increased access to tubewells and the subsequent electrification of regions naturally endowed with more groundwater have equipped farmers with the ability to withstand monsoonal shocks and fluctuations.

Suggested Citation

  • Zaveri, Esha & Wrenn, Douglas H. & Fisher-Vanden, Karen, 2016. "Water in the Balance: The Impact of Water Infrastructure on Agricultural Adaptation to Rainfall Shocks in India," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236216, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea16:236216
    DOI: 10.22004/ag.econ.236216
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/236216/files/Zaveri_AAEA.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.236216?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vaidyanathan, A., 2010. "Agricultural Growth in India: The Role of Technology, Incentives, and Institutions," OUP Catalogue, Oxford University Press, number 9780198064473.
    2. Foster, Andrew D & Rosenzweig, Mark R, 1996. "Technical Change and Human-Capital Returns and Investments: Evidence from the Green Revolution," American Economic Review, American Economic Association, vol. 86(4), pages 931-953, September.
    3. Sheetal Sekhri, 2014. "Wells, Water, and Welfare: The Impact of Access to Groundwater on Rural Poverty and Conflict," American Economic Journal: Applied Economics, American Economic Association, vol. 6(3), pages 76-102, July.
    4. Rud, Juan Pablo, 2012. "Electricity provision and industrial development: Evidence from India," Journal of Development Economics, Elsevier, vol. 97(2), pages 352-367.
    5. Sheetal Sekhri, 2013. "Missing Water: Agricultural Stress and Adaptation Strategies in Response to Groundwater Depletion in India," Virginia Economics Online Papers 406, University of Virginia, Department of Economics.
    6. Richard Hornbeck & Pinar Keskin, 2014. "The Historically Evolving Impact of the Ogallala Aquifer: Agricultural Adaptation to Groundwater and Drought," American Economic Journal: Applied Economics, American Economic Association, vol. 6(1), pages 190-219, January.
    7. Urvashi Narain & Sergio Margulis & Timothy Essam, 2011. "Estimating costs of adaptation to climate change," Climate Policy, Taylor & Francis Journals, vol. 11(3), pages 1001-1019, May.
    8. Vasant P Gandhi, 2009. "Groundwater Irrigation in India: Gains, Costs and Risks," Working Papers id:2091, eSocialSciences.
    9. Mendelsohn, Robert & Dinar, Ariel & Williams, Larry, 2006. "The distributional impact of climate change on rich and poor countries," Environment and Development Economics, Cambridge University Press, vol. 11(2), pages 159-178, April.
    10. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    11. Gandhi, Vasant P. & N V Namboodiri, 2009. "Groundwater Irrigation in India: Gains, Costs and Risks," IIMA Working Papers WP2009-03-08, Indian Institute of Management Ahmedabad, Research and Publication Department.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sussman Fran & Weaver Christopher P. & Grambsch Anne, 2014. "Challenges in applying the paradigm of welfare economics to climate change," Journal of Benefit-Cost Analysis, De Gruyter, vol. 5(3), pages 347-376, December.
    2. Zaveri, Esha D. & Wrenn, Douglas H. & Fisher-Vanden, Karen, 2020. "The impact of water access on short-term migration in rural India," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(2), April.
    3. Matthias Schmidt & Hermann Held & Elmar Kriegler & Alexander Lorenz, 2013. "Climate Policy Under Uncertain and Heterogeneous Climate Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 79-99, January.
    4. Robert J. R. Elliott & Ingmar Schumacher & Cees Withagen, 2020. "Suggestions for a Covid-19 Post-Pandemic Research Agenda in Environmental Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 1187-1213, August.
    5. Ghadir Asadi & Mohammad H. Mostafavi-Dehzooei, 2022. "The Role of Learning in Adaptation to Technology: The Case of Groundwater Extraction," Sustainability, MDPI, vol. 14(12), pages 1-37, June.
    6. Bharadwaj, Prashant & Fenske, James & Kala, Namrata & Mirza, Rinchan Ali, 2020. "The Green revolution and infant mortality in India," Journal of Health Economics, Elsevier, vol. 71(C).
    7. Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
    8. Thomas D. Pol & Ekko C. Ierland & Silke Gabbert, 2017. "Economic analysis of adaptive strategies for flood risk management under climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 267-285, February.
    9. Bharadwaj, Prashant & Ali Mirza, Rinchan, 2019. "Displacement and development: Long term impacts of population transfer in India," Explorations in Economic History, Elsevier, vol. 73(C), pages 1-1.
    10. Rodrigo Garcia‐Verdu & Alexis Meyer‐Cirkel & Akira Sasahara & Hans Weisfeld, 2022. "Importing inputs for climate change mitigation: The case of agricultural productivity," Review of International Economics, Wiley Blackwell, vol. 30(1), pages 34-56, February.
    11. Barbora Sedova & Matthias Kalkuhl & Robert Mendelsohn, 2020. "Distributional Impacts of Weather and Climate in Rural India," Economics of Disasters and Climate Change, Springer, vol. 4(1), pages 5-44, April.
    12. Karol Mazur, 2020. "Sharing Risk to Avoid Tragedy: Informal Insurance and Irrigation in Village Economies," CSAE Working Paper Series 2020-19, Centre for the Study of African Economies, University of Oxford.
    13. Yonas Alem & Mathilde Maurel & Katrin Millock, 2016. "Migration as an Adaptation Strategy to Weather Variability: An Instrumental Variables Probit Analysis," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01955941, HAL.
    14. Louis-Gaëtan Giraudet & Céline Guivarch, 2016. "Global warming as an asymmetric public bad," Working Papers 2016.26, FAERE - French Association of Environmental and Resource Economists.
    15. A. R. Vasavi, 2019. "The Displaced Threshing Yard: Involutions of the Rural," Review of Development and Change, , vol. 24(1), pages 31-54, June.
    16. McFadden, Jonathan & Miranowski, John, "undated". "Climate Change Impacts on the Intensive and Extensive Margins of US Agricultural Land," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170512, Agricultural and Applied Economics Association.
    17. Shannak, Sa'd, 2022. "Optimizing dynamics of water-energy-food nexus in a desert climate," Energy Policy, Elsevier, vol. 164(C).
    18. David Anthoff & Johannes Emmerling, 2019. "Inequality and the Social Cost of Carbon," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(2), pages 243-273.
    19. Sekhri, Sheetal, 2022. "Agricultural trade and depletion of groundwater," Journal of Development Economics, Elsevier, vol. 156(C).
    20. Byela Tibesigwa & Martine Visser & Jane Turpie, 2017. "Climate change and South Africa’s commercial farms: an assessment of impacts on specialised horticulture, crop, livestock and mixed farming systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(2), pages 607-636, April.

    More about this item

    Keywords

    Agricultural and Food Policy; Environmental Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea16:236216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.