IDEAS home Printed from https://ideas.repec.org/p/ags/aaea16/235365.html
   My bibliography  Save this paper

Vine-Copula Based Models for Farmland Portfolio Management

Author

Listed:
  • Feng, Xiaoguang
  • Hayes, Dermot

Abstract

U.S. farmland has achieved total returns of 10%-13% over the past decade with volatility of only 4%-5% (NCREIF Farmland Index). In addition, farmland returns have had low or negative correlation with traditional asset classes. These characteristics make farmland an attractive asset class for investors. Farmland, as a real asset, can also provide a hedge against inflation because farmland returns exhibit positive correlation with inflation. Over the past decade, annual U.S. farmland total return exceeds U.S. inflation rate by 3.55% (NCREIF Farmland Index and Consumer Price Index - Urban). With growing global demand for agricultural commodities and limited land to expand capacity, some investors expect that farmland will continue to generate superior returns for the foreseeable future. Efficient risk management and portfolio management are critical to create optimal risk/return profile for all investments. An essential issue in portfolio risk management is how marginal time series and the correlation structure of a large number of asset returns are treated. Most previous studies on farmland portfolio analysis were performed under the Capital Asset Pricing Model (CAPM) framework (Barry, 1980; Hennings, Sherrick, and Barry, 2005; Noland, Norvell, Paulson, and Schnitkey, 2011). The linear correlation assumption implied by the CAPM, however, is not adequate to capture complex correlation structure such as tail dependence and asymmetry that potentially exist among farmland asset returns. In addition, the normality assumption of the CAMP for asset returns has proven to be inappropriate in agriculture (Just and Weninger, 1999). Copula modeling is a suitable alternative. Margins and dependence can be separated by the copula function. The choice of marginal distribution is arbitrary and various copula types exhibiting flexible and complex correlation structures are available. Chen, Wilson, Larsen, and Dahl (2014) used the Gaussian copula to model joint distribution of agricultural asset returns to account for non-normal margins. However, the Gaussian copula can only capture symmetric correlation structure and allows no tail-dependence. Besides, the Gaussian copula, restrictions exist for most other multivariate copulas (Student’s t copula, Archimedean copulas, etc.). This inflexibility issue can be overcome by the pair-copula modeling proposed by Joe (1996). In particular, the regular vine (R-vines) representation of pair-wise copulas specifies arbitrary bivariate copulas as building blocks and hence can model any possible correlation structure. This study applies vine copulas to model farmland asset returns. We focus on annual state-level cropland returns for 30 major U.S. agricultural producing states. Average annual cropland returns on eight multi-state regions that the 30 states belong to and the average returns on the United States are included as well. This 39-dimensional data set covers the period spanning from 1998 to 2015. Following Brechmann and Czado (2013), ARMA-GARCH models with appropriate error distribution are fitted to each return. R-vine copulas are then used to model the correlation structure of standardized residuals obtained from the marginal GARCH models. Given the high dimensionality of the vine copula modeling, a Regular Vine Market Sector (RVMS) model (Brechmann and Czado, 2013) is applied to specify the R-vine structures and estimate the parameters. By grouping states by multi-state regions, this model mitigates the curse of dimensionality and facilitates interpretation of the correlation structure. The vine-copula based model used in this study loosens the restrictive normality and linearity assumptions under the classical CAPM framework, and allows for complex and flexible correlation structure such as tail-dependence. We compare this model to relevant benchmark models using the Gaussian and t copulas. The results show that the vine-copula based model provides a better a fit as indicated by modeling-fitting criteria. We show that, farmland portfolio management can benefit in terms of forecasting tail risk (Value-at-Risk) and constructing optimal portfolio more accurately for both passive and active portfolio management. We also use the vine-copula based model to identify and separate market, regional, and idiosyncratic risk for different risk measures. Our results show that the model provides an approach to precisely assessing and allocating risk of the farmland portfolio under the modern risk management framework. The vine-copula based model used in this study can serve as an initiative for more elaborate models for farmland portfolio management. One direction for future research would be to explore dynamic vine-copula structures to take into account the dynamics of correlations among farmland asset returns for forward-looking portfolio management. Another direction could be the consideration of estimation risk to account for the uncertainty of correlation parameters in the vine-copula model.

Suggested Citation

  • Feng, Xiaoguang & Hayes, Dermot, 2016. "Vine-Copula Based Models for Farmland Portfolio Management," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235365, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea16:235365
    DOI: 10.22004/ag.econ.235365
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/235365/files/Vine-Copula%20Based%20Models%20for%20Farmland%20Portfolio%20Management.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.235365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    2. Joe, Harry & Li, Haijun & Nikoloulopoulos, Aristidis K., 2010. "Tail dependence functions and vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 252-270, January.
    3. Richard E. Just & Quinn Weninger, 1999. "Are Crop Yields Normally Distributed?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(2), pages 287-304.
    4. Songjiao Chen & William W. Wilson & Ryan Larsen & Bruce Dahl, 2015. "Investing in Agriculture as an Asset Class," Agribusiness, John Wiley & Sons, Ltd., vol. 31(3), pages 353-371, June.
    5. Hennings, Enrique & Sherrick, Bruce J. & Barry, Peter J., 2005. "Portfolio Diversification Using Farmland Investments," 2005 Annual meeting, July 24-27, Providence, RI 19273, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Noland, Kevin & Norvell, Jonathan & Paulson, Nicholas D. & Schnitkey, Gary D., 2011. "The Role of Farmland in an Investment Portfolio: Analysis of Illinois Endowment Farms," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2011, pages 1-42, June.
    7. Peter J. Barry, 1980. "Capital Asset Pricing and Farm Real Estate," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 62(3), pages 549-553.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Songjiao Chen & William W. Wilson & Ryan Larsen & Bruce Dahl, 2015. "Investing in Agriculture as an Asset Class," Agribusiness, John Wiley & Sons, Ltd., vol. 31(3), pages 353-371, June.
    2. Li, Xin, 2016. "The Farmland Valuation Revisited," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 4(2), pages 1-14, April.
    3. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    4. Hobæk Haff, Ingrid, 2012. "Comparison of estimators for pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 91-105.
    5. Nabil Kazi-Tani & Didier Rullière, 2019. "On a construction of multivariate distributions given some multidimensional marginals," Post-Print hal-01575169, HAL.
    6. David E. Allen & Mohammad A. Ashraf & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2013. "Financial dependence analysis: applications of vine copulas," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 403-435, November.
    7. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    8. Wang, Fan & Li, Heng & Dong, Chao & Ding, Lieyun, 2019. "Knowledge representation using non-parametric Bayesian networks for tunneling risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Li, Haihe & Wang, Pan & Huang, Xiaoyu & Zhang, Zheng & Zhou, Changcong & Yue, Zhufeng, 2021. "Vine copula-based parametric sensitivity analysis of failure probability-based importance measure in the presence of multidimensional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    11. Zhang, Bangzheng & Wei, Yu & Yu, Jiang & Lai, Xiaodong & Peng, Zhenfeng, 2014. "Forecasting VaR and ES of stock index portfolio: A Vine copula method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 112-124.
    12. Nabil Kazi-Tani & Didier Rullière, 2017. "On a construction of multivariate distributions given some multidimensional marginals," Working Papers hal-01575169, HAL.
    13. Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
    14. Pavel Krupskii & Harry Joe, 2015. "Tail-weighted measures of dependence," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 614-629, March.
    15. Marcela de Marillac Carvalho & Luiz Otávio de Oliveira Pala & Gabriel Rodrigo Gomes Pessanha & Thelma Sáfadi, 2021. "Asymmetric dependence of intraday frequency components in the Brazilian stock market," SN Business & Economics, Springer, vol. 1(6), pages 1-18, June.
    16. Simpson, Emma S. & Wadsworth, Jennifer L. & Tawn, Jonathan A., 2021. "A geometric investigation into the tail dependence of vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    17. Marta Nai Ruscone & Daniel Fernández, 2021. "Dynamics of HDI Index: Temporal Dependence Based on D-vine Copulas Model for Three-Way Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 158(2), pages 563-593, December.
    18. Chemkha, Rahma & BenSaïda, Ahmed & Ghorbel, Ahmed, 2021. "Connectedness between cryptocurrencies and foreign exchange markets: Implication for risk management," Journal of Multinational Financial Management, Elsevier, vol. 59(C).
    19. Hua, Lei & Joe, Harry, 2014. "Strength of tail dependence based on conditional tail expectation," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 143-159.
    20. Nikoloulopoulos, Aristidis K. & Joe, Harry & Li, Haijun, 2012. "Vine copulas with asymmetric tail dependence and applications to financial return data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3659-3673.

    More about this item

    Keywords

    Agribusiness; Agricultural Finance; Financial Economics; Risk and Uncertainty;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea16:235365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.