IDEAS home Printed from https://ideas.repec.org/p/ags/aaea15/206052.html
   My bibliography  Save this paper

Developing Forecasting Model of Vegetable Price based on Climate Big Data

Author

Listed:
  • Yoo, Do-il

Abstract

Big data is one of the most discussed topics in recent economic and business sectors with explosive applications of information and communication technologies (ICT). The object of this study is to develop a forecasting model based on a big data processing. This study focuses on the forecasting of vegetable price considering climate factors as one of major big data associated with the agricultural field. Onion and napa cabbage in Korea are selected as target products. Price forecasting models are constructed by a Bayesian structural time series (BSTS) and a vector autoregression (VAR) models. Both models introduce climate factors of temperature, precipitation, sunshine duration, and the lowest temperature in chief producing district for onion and napa cabbage. Results show that, for onion price, BSTS is more appropriate for the short-term price forecast, and VAR for the long-term. For napa cabbage prices, both BSTS and VAR show similar patterns in price forecasting. However, BSTS predicts price relatively lower than VAR does. We conclude that it is necessary to consider big data concerning climate factor in forecasting vegetable price and to develop various models across agricultural products with their growing environment.

Suggested Citation

  • Yoo, Do-il, 2015. "Developing Forecasting Model of Vegetable Price based on Climate Big Data," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 206052, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea15:206052
    DOI: 10.22004/ag.econ.206052
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/206052/files/_doil_yoo__AAEA_2015_Developing_Forecasting_Model_of_Vegetable_Price_based_on_Climate_Big_Data.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.206052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    2. Wang, Renhe & Wang, Tong & Qian, Zhiyong & Hu, Shulan, 2023. "A Bayesian estimation approach of random switching exponential smoothing with application to credit forecast," Finance Research Letters, Elsevier, vol. 58(PC).
    3. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    4. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    5. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    6. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    7. Richard K. Crump & Stefano Eusepi & Domenico Giannone & Eric Qian & Argia M. Sbordone, 2021. "A Large Bayesian VAR of the United States Economy," Staff Reports 976, Federal Reserve Bank of New York.
    8. Xianguo HUANG & Roberto LEON-GONZALEZ & Somrasri YUPHO, 2013. "Financial Integration from a Time-Varying Cointegration Perspective," Asian Journal of Empirical Research, Asian Economic and Social Society, vol. 3(12), pages 1473-1487.
    9. Antonio Gargano & Davide Pettenuzzo & Allan Timmermann, 2019. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Management Science, INFORMS, vol. 65(2), pages 508-540, February.
    10. Guido Ascari & Luca Fosso, 2021. "The Inflation Rate Disconnect Puzzle: On the International Component of Trend Inflation and the Flattening of the Phillips Curve," Discussion Papers 2113, Centre for Macroeconomics (CFM).
    11. Drew Creal & Siem Jan Koopman & Eric Zivot, 2010. "Extracting a robust US business cycle using a time-varying multivariate model-based bandpass filter," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 695-719.
    12. Koopman, Siem Jan & Lucas, André, 2008. "A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 510-525.
    13. Del Negro, Marco & Giannone, Domenico & Giannoni, Marc P. & Tambalotti, Andrea, 2019. "Global trends in interest rates," Journal of International Economics, Elsevier, vol. 118(C), pages 248-262.
    14. McCausland, William J. & Miller, Shirley & Pelletier, Denis, 2011. "Simulation smoothing for state-space models: A computational efficiency analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 199-212, January.
    15. Michael D. Bauer & Glenn D. Rudebusch, 2020. "Interest Rates under Falling Stars," American Economic Review, American Economic Association, vol. 110(5), pages 1316-1354, May.
    16. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    17. Laura E. Jackson & M. Ayhan Kose & Christopher Otrok & Michael T. Owyang, 2016. "Specification and Estimation of Bayesian Dynamic Factor Models: A Monte Carlo Analysis with an Application to Global House Price Comovement," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 361-400, Emerald Group Publishing Limited.
    18. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    19. Thomas Hasenzagl & Filippo Pellegrino & Lucrezia Reichlin & Giovanni Ricco, 2022. "A Model of the Fed's View on Inflation," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 686-704, October.

    More about this item

    Keywords

    Demand and Price Analysis; Research Methods/ Statistical Methods;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea15:206052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.