IDEAS home Printed from https://ideas.repec.org/p/ags/aaea12/124333.html
   My bibliography  Save this paper

Implications of Missing Data Imputation for Agricultural Household Surveys: An Application to Technology Adoption

Author

Listed:
  • Gedikoglu, Haluk
  • Parcell, Joseph L.

Abstract

Missing data is a problem that occurs frequently in survey data. Missing data results in biased estimates and reduced efficiency for regression estimates. The objective of the current study is to analyze the impact of missing-data imputation, using multiple-imputation methods, on regression estimates for agricultural household surveys. The current study also analyzes the impact of multiple-imputation on regression results, when all the variables in the regression have missing observations. Finally, the current study compares the impact of univariate multiple imputation with multivariate normal multiple imputation, when some of the missing variables have discrete distribution. The results of the current study show that multivariate-normal multiple imputation performs better than univariate multiple imputation model, and overall both methods improve the efficiency of regression estimates.

Suggested Citation

  • Gedikoglu, Haluk & Parcell, Joseph L., 2012. "Implications of Missing Data Imputation for Agricultural Household Surveys: An Application to Technology Adoption," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124333, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea12:124333
    DOI: 10.22004/ag.econ.124333
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/124333/files/AAEA%202012%20Missing%20Data%20Imputation%20Final.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.124333?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mary Ahearn & David Banker & Dawn Marie Clay & Daniel Milkove, 2011. "Comparative Survey Imputation Methods for Farm Household Income," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 613-618.
    2. Michael W. Robbins & T. Kirk White, 2011. "Farm Commodity Payments and Imputation in the Agricultural Resource Management Survey," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 606-612.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gonzalo Villa‐Cox & Francesco Cavazza & Cristian Jordan & Mijail Arias‐Hidalgo & Paúl Herrera & Ramon Espinel & Davide Viaggi & Stijn Speelman, 2021. "Understanding constraints on private irrigation adoption decisions under uncertainty in data constrained settings: A novel empirical approach tested on Ecuadorian Cocoa cultivations," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 985-999, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kilic, Talip & Zezza, Alberto & Carletto, Calogero & Savastano, Sara, 2017. "Missing(ness) in Action: Selectivity Bias in GPS-Based Land Area Measurements," World Development, Elsevier, vol. 92(C), pages 143-157.
    2. Burns, Christopher & Prager, Daniel & Ghosh, Sujit & Goodwin, Barry, 2015. "Imputing for Missing Data in the ARMS Household Section: A Multivariate Imputation Approach," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205291, Agricultural and Applied Economics Association.
    3. Gedikoglu, Haluk & Parcell, Joseph L., 2013. "Implications of Survey Sampling Design for Missing Data Imputation," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149679, Agricultural and Applied Economics Association.
    4. Douadia Bougherara & Laurent Piet, 2018. "On the role of probability weighting on WTP for crop insurance with and without yield skewness," Working Papers hal-02790605, HAL.
    5. Allen M. Featherstone & Timothy A. Park & Jeremy G. Weber, 2012. "Keeping ARMS relevant: extracting additional information from ARMS," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 72(2), pages 233-246, July.
    6. Robbins, Michael W. & White, T. Kirk, 2014. "Direct Payments, Cash Rents, Land Values, and the Effects of Imputation in U.S. Farm-level Data," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 43(3), pages 1-20, December.
    7. Morehart, Mitch & Milkove, Dan & Xu, Yang, 2014. "Multivariate Farm Debt Imputation in the Agricultural Resource Management Survey (ARMS)," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169401, Agricultural and Applied Economics Association.
    8. Robbins Michael W., 2014. "The Utility of Nonparametric Transformations for Imputation of Survey Data," Journal of Official Statistics, Sciendo, vol. 30(4), pages 675-700, December.
    9. Jing Yi & Samantha Cohen & Sarah Rehkamp & Patrick Canning & Miguel I. Gómez & Houtian Ge, 2023. "Overcoming data barriers in spatial agri‐food systems analysis: A flexible imputation framework," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(3), pages 686-701, September.

    More about this item

    Keywords

    Research Methods/ Statistical Methods;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea12:124333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.