IDEAS home Printed from https://ideas.repec.org/p/ags/aaea11/103714.html
   My bibliography  Save this paper

Effects of Forestland Ownership Conversion on Greenhouse Gas Emissions: The Case of South Korea

Author

Listed:
  • Cho, Seong-Hoon
  • Kim, Hee Ho
  • Roberts, Roland K.
  • Kim, Seung Gyu
  • Lee, Daegoon

Abstract

This research analyzed the effects of forestland conversion from private to public ownership on greenhouse gas emissions by quantifying the relationship between forestland ownership conversion and deforestation, and then examining the effects of the change in deforestation on greenhouse gas emissions in South Korea. Ex ante simulations forecast greenhouse gas emissions resulting from deforestation rates under the current level of national forestland and three scenarios of increased percentages of national forestland. The findings suggest that increasing the percentage of national forestland would mitigate the increase in the deforestation rate, which in turn would moderate the increase in greenhouse gas emissions.

Suggested Citation

  • Cho, Seong-Hoon & Kim, Hee Ho & Roberts, Roland K. & Kim, Seung Gyu & Lee, Daegoon, 2011. "Effects of Forestland Ownership Conversion on Greenhouse Gas Emissions: The Case of South Korea," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103714, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea11:103714
    DOI: 10.22004/ag.econ.103714
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/103714/files/AAEA_2011_12852_GHG.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.103714?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arturas Juodis, 2013. "Cointegration Testing in Panel VAR Models Under Partial Identification and Spatial Dependence," UvA-Econometrics Working Papers 13-08, Universiteit van Amsterdam, Dept. of Econometrics.
    2. Marco Battaglini & Eleonora Patacchini & Edoardo Rainone, 2019. "Endogenous Social Connections in Legislatures," NBER Working Papers 25988, National Bureau of Economic Research, Inc.
    3. Bernd Hayo & Matthias Uhl, 2015. "Regional effects of federal tax shocks," Southern Economic Journal, John Wiley & Sons, vol. 82(2), pages 343-360, October.
    4. Breustedt, Gunnar & Habermann, Hendrik, 2010. "Einfluss Der Biogaserzeugung Auf Landwirtschaftliche Pachtpreise In Deutschland," 50th Annual Conference, Braunschweig, Germany, September 29-October 1, 2010 93937, German Association of Agricultural Economists (GEWISOLA).
    5. Debarsy, Nicolas & Gnabo, Jean-Yves & Kerkour, Malik, 2017. "Sovereign wealth funds’ cross-border investments: Assessing the role of country-level drivers and spatial competition," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 68-87.
    6. Badinger, Harald & Egger, Peter, 2013. "Spacey Parents and Spacey Hosts in FDI," Department of Economics Working Paper Series 154, WU Vienna University of Economics and Business.
    7. Emanuela Marrocu & Raffaele Paci & Stefano Usai, 2013. "Productivity Growth In The Old And New Europe: The Role Of Agglomeration Externalities," Journal of Regional Science, Wiley Blackwell, vol. 53(3), pages 418-442, August.
    8. Charlotte Ham & John B. Loomis & Patricia A. Champ, 2015. "Relative Economic Values of Open Space Provided by National Forest and Military Lands to Surrounding Communities," Growth and Change, Wiley Blackwell, vol. 46(1), pages 81-96, March.
    9. Christopher Higgins & Pavlos Kanaroglou, 2018. "Rapid transit, transit-oriented development, and the contextual sensitivity of land value uplift in Toronto," Urban Studies, Urban Studies Journal Limited, vol. 55(10), pages 2197-2225, August.
    10. Yong Bao & Xiaotian Liu & Lihong Yang, 2020. "Indirect Inference Estimation of Spatial Autoregressions," Econometrics, MDPI, vol. 8(3), pages 1-26, September.
    11. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    12. Raffaele Paci & Emanuela Marrocu & Stefano Usai, 2014. "The Complementary Effects of Proximity Dimensions on Knowledge Spillovers," Spatial Economic Analysis, Taylor & Francis Journals, vol. 9(1), pages 9-30, March.
    13. Steven N. Durlauf & Yannis M. Ioannides, 2010. "Social Interactions," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 451-478, September.
    14. David M. Cutler & J. Travis Donahoe, 2024. "Thick Market Externalities and the Persistence of the Opioid Epidemic," NBER Working Papers 32055, National Bureau of Economic Research, Inc.
    15. Jieun Lee, 2022. "Testing Endogeneity of Spatial Weights Matrices in Spatial Dynamic Panel Data Models," Papers 2209.05563, arXiv.org.
    16. Yihua Yu & Jing Wang & Xi Tian, 2016. "Identifying the Flypaper Effect in the Presence of Spatial Dependence: Evidence from Education in China's Counties," Growth and Change, Wiley Blackwell, vol. 47(1), pages 93-110, March.
    17. Pace, R. Kelley & LeSage, James P., 2021. "A simple closed-form relation between spatial weight matrices with different scalings," Economics Letters, Elsevier, vol. 207(C).
    18. Michele Aquaro & Natalia Bailey & M. Hashem Pesaran, 2015. "Quasi Maximum Likelihood Estimation of Spatial Models with Heterogeneous Coefficients," CESifo Working Paper Series 5428, CESifo.
    19. Baltagi, Badi H. & Pirotte, Alain & Yang, Zhenlin, 2021. "Diagnostic tests for homoskedasticity in spatial cross-sectional or panel models," Journal of Econometrics, Elsevier, vol. 224(2), pages 245-270.
    20. Tapsuwan, Sorada & Polyakov, Maksym & Bark, Rosalind & Nolan, Martin, 2015. "Valuing the Barmah–Millewa Forest and in stream river flows: A spatial heteroskedasticity and autocorrelation consistent (SHAC) approach," Ecological Economics, Elsevier, vol. 110(C), pages 98-105.

    More about this item

    Keywords

    Environmental Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea11:103714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.