IDEAS home Printed from https://ideas.repec.org/p/ags/aaea02/19904.html
   My bibliography  Save this paper

Estimation Of Efficient Regression Models For Applied Agricultural Economics Research

Author

Listed:
  • Ramirez, Octavio A.
  • Misra, Sukant K.
  • Nelson, Jeannie

Abstract

This paper proposes and explores the use of a partially adaptive estimation technique to improve the reliability of the inferences made from multiple regression models when the dependent variable is not normally distributed. The relevance of this technique for agricultural economics research is evaluated through Monte Carlo simulation and two mainstream applications: A time-series analysis of agricultural commodity prices and an empirical model of the West Texas cotton basis. It is concluded that, given non-normality, this technique can substantially reduce the magnitude of the standard errors of the slope parameter estimators in relation to OLS, GLS and other least squares based estimation procedures, in practice, allowing for more precise inferences about the existence, sign and magnitude of the effects of the independent variables on the dependent variable of interest. In addition, the technique produces confidence intervals for the dependent variable forecasts that are more efficient and consistent with the observed data. Key Words: Efficient regression models, partially adaptive estimation, non-normality, skewness, heteroskedasticity, autocorrelation.

Suggested Citation

  • Ramirez, Octavio A. & Misra, Sukant K. & Nelson, Jeannie, 2002. "Estimation Of Efficient Regression Models For Applied Agricultural Economics Research," 2002 Annual meeting, July 28-31, Long Beach, CA 19904, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  • Handle: RePEc:ags:aaea02:19904
    DOI: 10.22004/ag.econ.19904
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/19904/files/sp02ra03.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.19904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H.J. Bierens, 1981. "Robust Methods and Asymptotic Theory in Nonlinear Econometrics," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 35(3), pages 173-173, September.
    2. Seamon, V. Frederick & Kahl, Kandice H., 2000. "An Analysis Of Factors Affecting The Regional Cotton Basis," 2000 Conference, April 17-18 2000, Chicago, Illinois 18924, NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    3. McDonald, James B., 1989. "Partially adaptive estimation of ARMA time series models," International Journal of Forecasting, Elsevier, vol. 5(2), pages 217-230.
    4. Krinsky, Itzhak & Robb, A Leslie, 1986. "On Approximating the Statistical Properties of Elasticities," The Review of Economics and Statistics, MIT Press, vol. 68(4), pages 715-719, November.
    5. Charles B. Moss & J. S. Shonkwiler, 1993. "Estimating Yield Distributions with a Stochastic Trend and Nonnormal Errors," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(4), pages 1056-1062.
    6. McDonald, James B. & Newey, Whitney K., 1988. "Partially Adaptive Estimation of Regression Models via the Generalized T Distribution," Econometric Theory, Cambridge University Press, vol. 4(3), pages 428-457, December.
    7. Newey, Whitney K., 1988. "Adaptive estimation of regression models via moment restrictions," Journal of Econometrics, Elsevier, vol. 38(3), pages 301-339, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahidul Islam & Subhadip Ghosh & Mohua Podder, 2022. "Fifty years of agricultural development in Bangladesh: a comparison with India and Pakistan," SN Business & Economics, Springer, vol. 2(7), pages 1-41, July.
    2. Manamba EPAPHRA & John MASSAWE, 2016. "Investment and Economic Growth: An Empirical Analysis for Tanzania," Turkish Economic Review, KSP Journals, vol. 3(4), pages 578-609, December.
    3. Manamba EPAPHRA, 2016. "Determinants of Export Performance in Tanzania," Journal of Economics Library, KSP Journals, vol. 3(3), pages 470-487, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fong, Wai Mun, 1997. "Robust beta estimation: Some empirical evidence," Review of Financial Economics, Elsevier, vol. 6(2), pages 167-186.
    2. Yiguo Sun & Thanasis Stengos, 2008. "The absolute health income hypothesis revisited: a semiparametric quantile regression approach," Empirical Economics, Springer, vol. 35(2), pages 395-412, September.
    3. Ximing Wu & Thanasis Stengos, 2005. "Partially adaptive estimation via the maximum entropy densities," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 352-366, December.
    4. Ramirez, Octavio A. & Fadiga, Mohamadou L., 2003. "Forecasting Agricultural Commodity Prices with Asymmetric-Error GARCH Models," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(1), pages 1-15, April.
    5. Ramirez, Octavio A., 2001. "Autoregressive Conditional Heteroskedasticy Under Error-Term Non-Normality," 2001 Annual meeting, August 5-8, Chicago, IL 20595, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Delis, Manthos & Savva, Christos & Theodossiou, Panayiotis, 2020. "A Coronavirus Asset Pricing Model: The Role of Skewness," MPRA Paper 100877, University Library of Munich, Germany.
    7. Ao Yuan & Jan G. De Gooijer, 2007. "Semiparametric Regression with Kernel Error Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 841-869, December.
    8. Luca Bagnato & Valerio Potì & Maria Zoia, 2015. "The role of orthogonal polynomials in adjusting hyperpolic secant and logistic distributions to analyse financial asset returns," Statistical Papers, Springer, vol. 56(4), pages 1205-1234, November.
    9. Masayuki Hirukawa & Mari Sakudo, 2016. "Testing Symmetry of Unknown Densities via Smoothing with the Generalized Gamma Kernels," Econometrics, MDPI, vol. 4(2), pages 1-27, June.
    10. James B. McDonald & Daniel B. Walton & Bryan Chia, 2020. "Distributional Assumptions and the Estimation of Contingent Valuation Models," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 431-460, August.
    11. Marcelo Fernandes & Eduardo Mendes & Olivier Scaillet, 2015. "Testing for symmetry and conditional symmetry using asymmetric kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 649-671, August.
    12. Peter M Robinson, 2009. "Developments in the Analysis of Spatial Data," STICERD - Econometrics Paper Series 531, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    13. Haoying Wang, 2018. "Pricing used books on Amazon.com: a spatial approach to price dispersion," Spatial Economic Analysis, Taylor & Francis Journals, vol. 13(1), pages 99-117, January.
    14. Delis, Manthos D. & Savva, Christos S. & Theodossiou, Panayiotis, 2021. "The impact of the coronavirus crisis on the market price of risk," Journal of Financial Stability, Elsevier, vol. 53(C).
    15. Tao Chen & Gautam Tripathi, 2013. "Testing conditional symmetry without smoothing," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 273-313, June.
    16. Lee, Jungyoon & Robinson, Peter M., 2020. "Adaptive inference on pure spatial models," Journal of Econometrics, Elsevier, vol. 216(2), pages 375-393.
    17. Arnab Maity & Michael Sherman, 2008. "On adaptive linear regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(12), pages 1409-1422.
    18. Gupta, A, 2015. "Nonparametric specification testing via the trinity of tests," Economics Discussion Papers 15619, University of Essex, Department of Economics.
    19. De Gooijer, Jan G. & Reichardt, Hugo, 2021. "A multi-step kernel–based regression estimator that adapts to error distributions of unknown form," LSE Research Online Documents on Economics 115083, London School of Economics and Political Science, LSE Library.
    20. Arslan, Olcay, 2004. "Family of multivariate generalized t distributions," Journal of Multivariate Analysis, Elsevier, vol. 89(2), pages 329-337, May.

    More about this item

    Keywords

    Research Methods/ Statistical Methods;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea02:19904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.