IDEAS home Printed from https://ideas.repec.org/p/byu/byumcl/201209.html
   My bibliography  Save this paper

Heteroskedasticity and Distributional Assumptions in the Censored Regression Model

Author

Listed:
  • James B. McDonald

    (Department of Economics, Brigham Young University)

  • Hieu Nguyen

    (Department of Economics, Brigham Young University)

Abstract

Data censoring causes ordinary least squares estimators of linear models to be biased and inconsistent. The Tobit estimator yields consistent estimators in the presence of data censoring if the errors are normally distributed. However, non-normality or heteroskedasticity results in the Tobit estimators being inconsistent. Various estimators have been proposed for circumventing the normality assumption. Some of these estimators include censored least absolute deviations (CLAD), symmetrically censored least squares (SCLS), and partially adaptive estimators. CLAD and SCLS will be consistent in the presence of heteroskedasticity; however, SCLS performs poorly in the presence of asymmetric errors. This paper extends the partially adaptive estimation approach to accommodate possible heteroskedasticity as well as non-normality. A simulation study is used to investigate the estimators’ relative efficiency in these settings. The partially adaptive censored regression estimators have little efficiency loss for censored normal errors and appear to outperform the Tobit and semiparametric estimators for non-normal error distributions and be less sensitive to the presence of heteroskedasticity. An empirical example is considered which supports these results.

Suggested Citation

  • James B. McDonald & Hieu Nguyen, 2012. "Heteroskedasticity and Distributional Assumptions in the Censored Regression Model," BYU Macroeconomics and Computational Laboratory Working Paper Series 2012-09, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
  • Handle: RePEc:byu:byumcl:201209
    as

    Download full text from publisher

    File URL: http://economics.byu.edu/Documents/Macro%20Lab/Working%20Paper%20Series/BYUMCL2012-09.pdf
    File Function: First version, 2012
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Powell, James L, 1986. "Symmetrically Trimmed Least Squares Estimation for Tobit Models," Econometrica, Econometric Society, vol. 54(6), pages 1435-1460, November.
    2. Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
    3. Butler, Richard J, et al, 1990. "Robust and Partially Adaptive Estimation of Regression Models," The Review of Economics and Statistics, MIT Press, vol. 72(2), pages 321-327, May.
    4. McDonald, James B. & Xu, Yexiao J., 1996. "A comparison of semi-parametric and partially adaptive estimators of the censored regression model with possibly skewed and leptokurtic error distributions," Economics Letters, Elsevier, vol. 51(2), pages 153-159, May.
    5. Arabmazar, Abbas & Schmidt, Peter, 1982. "An Investigation of the Robustness of the Tobit Estimator to Non-Normality," Econometrica, Econometric Society, vol. 50(4), pages 1055-1063, July.
    6. Paarsch, Harry J., 1984. "A Monte Carlo comparison of estimators for censored regression models," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 197-213.
    7. Amemiya, Takeshi, 1973. "Regression Analysis when the Dependent Variable is Truncated Normal," Econometrica, Econometric Society, vol. 41(6), pages 997-1016, November.
    8. Stephen R. Cosslett, 2004. "Efficient Semiparametric Estimation of Censored and Truncated Regressions via a Smoothed Self-Consistency Equation," Econometrica, Econometric Society, vol. 72(4), pages 1277-1293, July.
    9. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    10. Newey, Whitney K., 1987. "Specification tests for distributional assumptions in the Tobit model," Journal of Econometrics, Elsevier, vol. 34(1-2), pages 125-145.
    11. Amemiya, Takeshi, 1984. "Tobit models: A survey," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 3-61.
    12. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 69(2), pages 427-428, October.
    13. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    14. Randall A. Lewis & James B. McDonald, 2014. "Partially Adaptive Estimation of the Censored Regression Model," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 732-750, October.
    15. McDonald, James B., 1989. "Partially adaptive estimation of ARMA time series models," International Journal of Forecasting, Elsevier, vol. 5(2), pages 217-230.
    16. Greene, William H, 1981. "On the Asymptotic Bias of the Ordinary Least Squares Estimator of the Tobit Model," Econometrica, Econometric Society, vol. 49(2), pages 505-513, March.
    17. Nawata, Kazumitsu, 1990. "Robust estimation based on grouped-adjusted data in censored regression models," Journal of Econometrics, Elsevier, vol. 43(3), pages 337-362, March.
    18. McDonald, James B. & Newey, Whitney K., 1988. "Partially Adaptive Estimation of Regression Models via the Generalized T Distribution," Econometric Theory, Cambridge University Press, vol. 4(3), pages 428-457, December.
    19. Steven Caudill, 2012. "A partially adaptive estimator for the censored regression model based on a mixture of normal distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(2), pages 121-137, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Randall A. Lewis & James B. McDonald, 2014. "Partially Adaptive Estimation of the Censored Regression Model," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 732-750, October.
    2. Jason Cook & James McDonald, 2013. "Partially Adaptive Estimation of Interval Censored Regression Models," Computational Economics, Springer;Society for Computational Economics, vol. 42(1), pages 119-131, June.
    3. McDonald, James B. & Xu, Yexiao J., 1996. "A comparison of semi-parametric and partially adaptive estimators of the censored regression model with possibly skewed and leptokurtic error distributions," Economics Letters, Elsevier, vol. 51(2), pages 153-159, May.
    4. Golan, Amos & Judge, George & Perloff, Jeffrey, 1997. "Estimation and inference with censored and ordered multinomial response data," Journal of Econometrics, Elsevier, vol. 79(1), pages 23-51, July.
    5. Steven Caudill, 2012. "A partially adaptive estimator for the censored regression model based on a mixture of normal distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(2), pages 121-137, June.
    6. James B. McDonald & Richard A. Michelfelder & Panayiotis Theodossiou, 2009. "Robust Regression Estimation Methods and Intercept Bias: A Capital Asset Pricing Model Application," Multinational Finance Journal, Multinational Finance Journal, vol. 13(3-4), pages 293-321, September.
    7. James B. McDonald & Daniel B. Walton & Bryan Chia, 2020. "Distributional Assumptions and the Estimation of Contingent Valuation Models," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 431-460, August.
    8. Franco Peracchi, 1988. "Bounded Influence Estimators for the Censored Regression Model," UCLA Economics Working Papers 487, UCLA Department of Economics.
    9. James Mcdonald & Richard Michelfelder & Panayiotis Theodossiou, 2010. "Robust estimation with flexible parametric distributions: estimation of utility stock betas," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 375-387.
    10. Delis, Manthos & Savva, Christos & Theodossiou, Panayiotis, 2020. "A Coronavirus Asset Pricing Model: The Role of Skewness," MPRA Paper 100877, University Library of Munich, Germany.
    11. BenSaïda, Ahmed & Slim, Skander, 2016. "Highly flexible distributions to fit multiple frequency financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 203-213.
    12. Mark Ottoni Wilhelm, 2008. "Practical Considerations for Choosing Between Tobit and SCLS or CLAD Estimators for Censored Regression Models with an Application to Charitable Giving," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(4), pages 559-582, August.
    13. P. Čížek & S. Sadikoglu, 2018. "Bias-corrected quantile regression estimation of censored regression models," Statistical Papers, Springer, vol. 59(1), pages 215-247, March.
    14. Delis, Manthos D. & Savva, Christos S. & Theodossiou, Panayiotis, 2021. "The impact of the coronavirus crisis on the market price of risk," Journal of Financial Stability, Elsevier, vol. 53(C).
    15. Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
    16. Daniel Pollmann & Thomas Dohmen & Franz Palm, 2020. "Robust Estimation of Wage Dispersion with Censored Data: An Application to Occupational Earnings Risk and Risk Attitudes," De Economist, Springer, vol. 168(4), pages 519-540, December.
    17. Allen, Linda & Bali, Turan G., 2007. "Cyclicality in catastrophic and operational risk measurements," Journal of Banking & Finance, Elsevier, vol. 31(4), pages 1191-1235, April.
    18. Kerman, Sean C. & McDonald, James B., 2013. "Skewness–kurtosis bounds for the skewed generalized T and related distributions," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2129-2134.
    19. Maria Karlsson & Thomas Laitila, 2014. "Finite mixture modeling of censored regression models," Statistical Papers, Springer, vol. 55(3), pages 627-642, August.
    20. Sukru Acitas & Pelin Kasap & Birdal Senoglu & Olcay Arslan, 2013. "One-step M -estimators: Jones and Faddy's skewed t -distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(7), pages 1545-1560, July.

    More about this item

    Keywords

    censored regression; Tobit; partially adaptive estimators; heteroskedasticity; non-normality;
    All these keywords.

    JEL classification:

    • C34 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Truncated and Censored Models; Switching Regression Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:byu:byumcl:201209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kerk Phillips (email available below). General contact details of provider: https://edirc.repec.org/data/debyuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.