IDEAS home Printed from https://ideas.repec.org/p/ags/aaae16/246977.html
   My bibliography  Save this paper

The role of maize storage in stabilizing annual household maize consumption: an application of generalized propensity score matching

Author

Listed:
  • Kariuki, Sarah W.
  • De Groote, Hugo
  • Ndegwa, Michael K.

Abstract

Rural households in developing countries face yield risks and seasonal production amidst the desire for stable household consumption. While storage has been cited as one of the ways of smoothing consumption during the lean periods, there is little empirical evidence on the subject. The current study used a generalized propensity score approach to examine the impact of storage on maize consumption smoothing. Maize was found to be the main crop, mostly grown for home consumption. The amount bought increased during the leaner periods when the prices were higher. In addition, the coefficient of variation for total maize consumption for decreased with increase in the length of storage, indicating that indeed storage helps to smoothen consumption across the year and consequently improve household food security.

Suggested Citation

  • Kariuki, Sarah W. & De Groote, Hugo & Ndegwa, Michael K., 2016. "The role of maize storage in stabilizing annual household maize consumption: an application of generalized propensity score matching," 2016 Fifth International Conference, September 23-26, 2016, Addis Ababa, Ethiopia 246977, African Association of Agricultural Economists (AAAE).
  • Handle: RePEc:ags:aaae16:246977
    DOI: 10.22004/ag.econ.246977
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/246977/files/312.%20Maize%20storage%20in%20Kenya.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.246977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jochen Kluve & Hilmar Schneider & Arne Uhlendorff & Zhong Zhao, 2012. "Evaluating continuous training programmes by using the generalized propensity score," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 587-617, April.
    2. repec:bla:scandj:v:94:y:1992:i:2:p:253-73 is not listed on IDEAS
    3. Jochen Kluve & Hilmar Schneider & Arne Uhlendorff & Zhong Zhao, 2012. "Evaluating continuous training programmes by using the generalized propensity score," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 587-617, April.
    4. Albert Park, 2006. "Risk and Household Grain Management in Developing Countries," Economic Journal, Royal Economic Society, vol. 116(514), pages 1088-1115, October.
    5. Ndegwa, Michael & De Groote, Hugo & Gitonga, Zachary & Bruce, Anani, 2015. "Effectiveness and Economics of Hermetic Bags for Maize Storage: Results of a Randomized Controlled Trial in Kenya," 2015 Conference, August 9-14, 2015, Milan, Italy 212524, International Association of Agricultural Economists.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    2. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Ulf Rinne & Arne Uhlendorff & Zhong Zhao, 2013. "Vouchers and caseworkers in training programs for the unemployed," Empirical Economics, Springer, vol. 45(3), pages 1089-1127, December.
    4. Hilal Atasoy & Rajiv D. Banker & Paul A. Pavlou, 2016. "On the Longitudinal Effects of IT Use on Firm-Level Employment," Information Systems Research, INFORMS, vol. 27(1), pages 6-26, March.
    5. Becker, Sascha O. & Egger, Peter H. & von Ehrlich, Maximilian, 2012. "Too much of a good thing? On the growth effects of the EU's regional policy," European Economic Review, Elsevier, vol. 56(4), pages 648-668.
    6. FLORES-LAGUNES Alfonso & CHOE Chung & LEE Sang-Jun, 2011. "Do Dropouts Benefit from Training Programs? Korean Evidence Employing Methods for Continuous Treatments," LISER Working Paper Series 2011-34, Luxembourg Institute of Socio-Economic Research (LISER).
    7. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.
    8. Rüdiger Wapler & Daniel Werner & Katja Wolf, 2018. "Active labour market policies in Germany: do regional labour markets benefit?," Applied Economics, Taylor & Francis Journals, vol. 50(51), pages 5561-5578, November.
    9. Swen Kuh & Grace S. Chiu & Anton H. Westveld, 2020. "Latent Causal Socioeconomic Health Index," Papers 2009.12217, arXiv.org, revised Oct 2023.
    10. Katrin Hohmeyer, 2011. "Effectiveness of One-Euro-Jobs: Do programme characteristics matter?," Post-Print hal-00719485, HAL.
    11. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Chung Choe & Alfonso Flores-Lagunes & Sang-Jun Lee, 2015. "Do dropouts with longer training exposure benefit from training programs? Korean evidence employing methods for continuous treatments," Empirical Economics, Springer, vol. 48(2), pages 849-881, March.
    13. Ida D'Attoma & Silvia Pacei, 2018. "Evaluating the Effects of Product Innovation on the Performance of European Firms by Using the Generalised Propensity Score," German Economic Review, Verein für Socialpolitik, vol. 19(1), pages 94-112, February.
    14. Valente, Marica, 2023. "Policy evaluation of waste pricing programs using heterogeneous causal effect estimation," Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
    15. Sylvester Amoako Agyemang & Tomáš Ratinger & Miroslava Bavorová, 2022. "The Impact of Agricultural Input Subsidy on Productivity: The Case of Ghana," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 34(3), pages 1460-1485, June.
    16. Martin Huber & Yu‐Chin Hsu & Ying‐Ying Lee & Layal Lettry, 2020. "Direct and indirect effects of continuous treatments based on generalized propensity score weighting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 814-840, November.
    17. Carina Steckenleiter & Michael Lechner & Tim Pawlowski & Ute Schüttoff, 2023. "Do local expenditures on sports facilities affect sports participation?," Economic Inquiry, Western Economic Association International, vol. 61(4), pages 1103-1128, October.
    18. Finn McGuire & Noemi Kreif & Peter C. Smith, 2021. "The effect of distance on maternal institutional delivery choice: Evidence from Malawi," Health Economics, John Wiley & Sons, Ltd., vol. 30(9), pages 2144-2167, September.
    19. Yong-Seok Choi & Siwook Lee, 2013. "Productivity, Markups and Export Intensity: Evidence from Korean Manufacturing," Korean Economic Review, Korean Economic Association, vol. 29, pages 329-350.
    20. Flores-Lagunes, Alfonso & Gonzalez, Arturo & Neumann, Todd C., 2007. "Estimating the Effects of Length of Exposure to a Training Program: The Case of Job Corps," IZA Discussion Papers 2846, Institute of Labor Economics (IZA).

    More about this item

    Keywords

    Crop Production/Industries; Farm Management;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaae16:246977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaaeaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.