IDEAS home Printed from https://ideas.repec.org/p/aep/anales/4589.html
   My bibliography  Save this paper

Una metodología de clustering para agrupar series temporales en regiones contiguas

Author

Listed:
  • Pablo Quintana

Abstract

Los algoritmos de clustering con restricción espacial existentes están enfocados principalmente en obtener regiones contiguas, pero no hay muchos trabajos que contemplen la agrupación de series temporales. En este paper se propone una nueva metodología de regionalización que contempla los avances que se vienen haciendo en el campo de redes neuronales y aprendizaje no supervisado denominada spatial constraints into deep embedding clustering (SDEC). El propósito del algoritmo es agrupar unidades espaciales transformando el espacio de atributos en otro de menor dimensión representado por variables latentes que logren destacar la característica del grupo al que pertenecen. Se realizaron simulaciones de series temporales por cada unidad espacial en dónde, SDEC muestra resultados superiores con respecto a otros métodos existentes en la literatura. Con el objetivo de aplicar el método a problemas de la vida real, se hace un breve estudio de la evolución del virus del Covid 19 por departamento o partido de la República Argentina, posteriormente se trata de llegar a una interpretación de los resultados obtenidos para evaluar el funcionamiento del algoritmo.

Suggested Citation

  • Pablo Quintana, 2022. "Una metodología de clustering para agrupar series temporales en regiones contiguas," Asociación Argentina de Economía Política: Working Papers 4589, Asociación Argentina de Economía Política.
  • Handle: RePEc:aep:anales:4589
    as

    Download full text from publisher

    File URL: https://aaep.org.ar/works/works2022/4589.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Billings, Stephen B. & Johnson, Erik B., 2012. "The location quotient as an estimator of industrial concentration," Regional Science and Urban Economics, Elsevier, vol. 42(4), pages 642-647.
    2. Robert Haining & Stephen Wise & Jingsheng Ma, 2000. "Designing and implementing software for spatial statistical analysis in a GIS environment," Journal of Geographical Systems, Springer, vol. 2(3), pages 257-286, September.
    3. Steve Wise & Robert Haining & Jingsheng Ma, 1997. "Regionalisation Tools for the Exploratory Spatial Analysis of Health Data," Advances in Spatial Science, in: Manfred M. Fischer & Arthur Getis (ed.), Recent Developments in Spatial Analysis, chapter 5, pages 83-100, Springer.
    4. Marie Chavent & Vanessa Kuentz-Simonet & Amaury Labenne & Jérôme Saracco, 2018. "ClustGeo: an R package for hierarchical clustering with spatial constraints," Computational Statistics, Springer, vol. 33(4), pages 1799-1822, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo Aníbal Quintana, 2021. "Métodos de clustering espacialmente restringidos: Un análisis al agrupamiento por nivel de estudio en la provincia de Mendoza," Asociación Argentina de Economía Política: Working Papers 4510, Asociación Argentina de Economía Política.
    2. Caterina Morelli & Simone Boccaletti & Paolo Maranzano & Philipp Otto, 2024. "Multidimensional spatiotemporal clustering -- An application to environmental sustainability scores in Europe," Papers 2405.20191, arXiv.org.
    3. Pires, Jose Claudio Linhares & Cravo, Tulio & Lodato, Simon & Piza, Caio, 2013. "Industrial Clusters and Economic Performance in Brazil," IDB Publications (Working Papers) 4771, Inter-American Development Bank.
    4. Seungil Yum, 2019. "The interaction between knowledge-intensive business services and urban economy," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 63(1), pages 53-83, August.
    5. Geoff Boeing, 2020. "Online rental housing market representation and the digital reproduction of urban inequality," Environment and Planning A, , vol. 52(2), pages 449-468, March.
    6. Dalila Camêlo Aguiar & Ramón Gutiérrez Sánchez & Edwirde Luiz Silva Camêlo, 2020. "Hierarchical Clustering with Spatial Constraints and Standardized Incidence Ratio in Tuberculosis Data," Mathematics, MDPI, vol. 8(9), pages 1-12, September.
    7. Wei Liu & Chenggu Li & Yao Tong & Jing Zhang & Zuopeng Ma, 2020. "The Places Children Go: Understanding Spatial Patterns and Formation Mechanism for Children’s Commercial Activity Space in Changchun City, China," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    8. Deb, Soudeep & Karmakar, Sayar, 2023. "A novel spatio-temporal clustering algorithm with applications on COVID-19 data from the United States," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    9. Ángeles Sánchez & Jorge Chica-Olmo & Juan de Dios Jiménez-Aguilera, 2018. "A Space–Time Study for Mapping Quality of Life in Andalusia During the Crisis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(2), pages 699-728, January.
    10. Xiaodong Zhang & Haoying Han & Yongjun Tang & Zhilu Chen, 2023. "Spatial Distribution Characteristics and Driving Factors of Tourism Resources in China," Land, MDPI, vol. 12(5), pages 1-16, May.
    11. Chenxi Li & Kening Wu & Xiangyu Gao, 2020. "Manufacturing industry agglomeration and spatial clustering: Evidence from Hebei Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 2941-2965, April.
    12. Rui Fragoso & Conceição Rego & Vladimir Bushenkov, 2016. "Clustering of Territorial Areas: A Multi-Criteria Districting Problem," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(2), pages 179-198, December.
    13. Dai, Tianran & Schiff, Nathan, 2023. "The structure and growth of ethnic neighborhoods," Journal of Urban Economics, Elsevier, vol. 137(C).
    14. Hyun Kim & Yongwan Chun & Kamyoung Kim, 2015. "Delimitation of Functional Regions Using a p-Regions Problem Approach," International Regional Science Review, , vol. 38(3), pages 235-263, July.
    15. Tian, Zheng, 2013. "Measuring Agglomeration Using the Standardized Location Quotient with a Bootstrap Method," Journal of Regional Analysis and Policy, Mid-Continent Regional Science Association, vol. 43(2).
    16. Lu Liu & Yu Tian, 2022. "Does the Compact City Paradigm Help Reduce Poverty? Evidence from China," IJERPH, MDPI, vol. 19(10), pages 1-19, May.
    17. Anabela Marques Santos & Francesco Molica & Carlos Torrecilla Salinas, 2024. "EU-funded investment in Artificial Intelligence and regional specialization," GEE Papers 181, Gabinete de Estratégia e Estudos, Ministério da Economia, revised Jul 2024.
    18. Pi, Jianhua & Li, Dong & Liu, Xingjian & Freestone, Robert, 2021. "The spatial distribution of employment around major Chinese airports," Journal of Transport Geography, Elsevier, vol. 91(C).
    19. Juan C Duque & Henry Laniado & Adriano Polo, 2018. "S-maup: Statistical test to measure the sensitivity to the modifiable areal unit problem," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-25, November.
    20. Boris Abeli Pekarou Pemi & Donatien Njomo & René Tchinda & Jean Calvin Seutche & Armel Zambou Kenfack & Mahamat Hassane Babikir & Venant Sorel Chara-Dackou, 2024. "Sectoral Assessment of the Energy, Water, Waste and Land Nexus in the Sustainability of Agricultural Products in Cameroon," Sustainability, MDPI, vol. 16(2), pages 1-29, January.

    More about this item

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aep:anales:4589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Juan Manuel Quintero (email available below). General contact details of provider: https://edirc.repec.org/data/aaeppea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.