IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v17y2001i2-3p125-39.html
   My bibliography  Save this article

A Higher-Order Taylor Expansion Approach to Simulation of Stochastic Forward-Looking Models with an Application to a Nonlinear Phillips Curve Model

Author

Listed:
  • Collard, Fabrice
  • Juillard, Michel

Abstract

We propose to apply to the simulation of general nonlinear rational-expectation models a method where the expectation functions are approximated through a higher-order Taylor expansion. This method has been advocated by Judd (1998) and others for the simulation of stochastic optimal-control problems and we extend its application to more general cases. The coefficients for the first-order approximation of the expectation function are obtained using a generalized eigen value decomposition as it is usual for the simulation of linear rational-expectation models. Coefficients for higher-order terms in the Taylor expansion are then obtained by solving a succession of linear systems. In addition, we provide a method to reduce a bias in the computation of the stochastic equilibrium of such models. These procedures are made available in DYNARE, a MATLAB and GAUSS based simulation program. This method is then applied to the simulation of a macroeconomic model embodying a nonlinear Phillips curve. We show that in this case a quadratic approximation is sufficient, but different in important ways from the simulation of a linearized version of the model. Copyright 2001 by Kluwer Academic Publishers

Suggested Citation

  • Collard, Fabrice & Juillard, Michel, 2001. "A Higher-Order Taylor Expansion Approach to Simulation of Stochastic Forward-Looking Models with an Application to a Nonlinear Phillips Curve Model," Computational Economics, Springer;Society for Computational Economics, vol. 17(2-3), pages 125-139, June.
  • Handle: RePEc:kap:compec:v:17:y:2001:i:2-3:p:125-39
    as

    Download full text from publisher

    File URL: http://journals.kluweronline.com/issn/0927-7099/contents
    Download Restriction: Access to the full text of the articles in this series is restricted.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:17:y:2001:i:2-3:p:125-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.