IDEAS home Printed from https://ideas.repec.org/p/aah/create/2016-04.html
   My bibliography  Save this paper

Data-Driven Inference on Sign Restrictions in Bayesian Structural Vector Autoregression

Author

Listed:
  • Markku Lanne

    (University of Helsinki and CREATES)

  • Jani Luoto

    (University of Helsinki)

Abstract

Sign-identified structural vector autoregressive (SVAR) models have recently become popular. However, the conventional approach to sign restrictions only yields set identification, and implicitly assumes an informative prior distribution of the impulse responses whose influence does not vanish asymptotically. In other words, within the set the impulse responses are driven by the implicit prior, and the likelihood has no significance. In this paper, we introduce a Bayesian SVAR model where unique identification is achieved by statistical properties of the data. Our setup facilitates assuming a genuinely noninformative prior and thus learning from the data about the impulse responses. While the shocks are statistically identified, they carry no economic meaning as such, and we propose a procedure for labeling them by their probabilities of satisfying each of the given sign restrictions. The impulse responses of the identified economic shocks can subsequently be computed in a straightforward manner. Our approach is quite flexible in that it facilitates labeling only a subset of the sign-restricted shocks, and also concluding that none of the sign restrictions is plausible. We illustrate the methods by two empirical applications to U.S. macroeconomic data.

Suggested Citation

  • Markku Lanne & Jani Luoto, 2016. "Data-Driven Inference on Sign Restrictions in Bayesian Structural Vector Autoregression," CREATES Research Papers 2016-04, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2016-04
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/16/rp16_04.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christiane Baumeister & James D. Hamilton, 2015. "Sign Restrictions, Structural Vector Autoregressions, and Useful Prior Information," Econometrica, Econometric Society, vol. 83(5), pages 1963-1999, September.
    2. Michele Piffer, 2016. "Assessing Identifying Restrictions in SVAR Models," Discussion Papers of DIW Berlin 1563, DIW Berlin, German Institute for Economic Research.
    3. Nigar Hashimzade & Michael A. Thornton (ed.), 2013. "Handbook of Research Methods and Applications in Empirical Macroeconomics," Books, Edward Elgar Publishing, number 14327.
    4. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    5. Geweke, John, 2007. "Interpretation and inference in mixture models: Simple MCMC works," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3529-3550, April.
    6. Gert Peersman, 2005. "What caused the early millennium slowdown? Evidence based on vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 185-207.
    7. Waggoner, Daniel F. & Zha, Tao, 2003. "Likelihood preserving normalization in multiple equation models," Journal of Econometrics, Elsevier, vol. 114(2), pages 329-347, June.
    8. Inoue, Atsushi & Kilian, Lutz, 2013. "Inference on impulse response functions in structural VAR models," Journal of Econometrics, Elsevier, vol. 177(1), pages 1-13.
    9. Faust, Jon, 1998. "The robustness of identified VAR conclusions about money," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 49(1), pages 207-244, December.
    10. Lanne, Markku & Lütkepohl, Helmut & Maciejowska, Katarzyna, 2010. "Structural vector autoregressions with Markov switching," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 121-131, February.
    11. Herwartz, Helmut & Lütkepohl, Helmut, 2014. "Structural vector autoregressions with Markov switching: Combining conventional with statistical identification of shocks," Journal of Econometrics, Elsevier, vol. 183(1), pages 104-116.
    12. Joshua C. C. Chan, 2017. "The Stochastic Volatility in Mean Model With Time-Varying Parameters: An Application to Inflation Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 17-28, January.
    13. Renée Fry & Adrian Pagan, 2011. "Sign Restrictions in Structural Vector Autoregressions: A Critical Review," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 938-960, December.
    14. Lanne, Markku & Meitz, Mika & Saikkonen, Pentti, 2017. "Identification and estimation of non-Gaussian structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 196(2), pages 288-304.
    15. Canova, Fabio & Nicolo, Gianni De, 2002. "Monetary disturbances matter for business fluctuations in the G-7," Journal of Monetary Economics, Elsevier, vol. 49(6), pages 1131-1159, September.
    16. Mr. Roland Straub & Gert Peersman, 2006. "Putting the New Keynesian Model to a Test," IMF Working Papers 2006/135, International Monetary Fund.
    17. Lutz Kilian & Daniel P. Murphy, 2012. "Why Agnostic Sign Restrictions Are Not Enough: Understanding The Dynamics Of Oil Market Var Models," Journal of the European Economic Association, European Economic Association, vol. 10(5), pages 1166-1188, October.
    18. Canova, Fabio & Paustian, Matthias, 2011. "Business cycle measurement with some theory," Journal of Monetary Economics, Elsevier, vol. 58(4), pages 345-361.
    19. Lanne, Markku & Lütkepohl, Helmut, 2010. "Structural Vector Autoregressions With Nonnormal Residuals," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 159-168.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Justyna Wr'oblewska & {L}ukasz Kwiatkowski, 2024. "Identification of structural shocks in Bayesian VEC models with two-state Markov-switching heteroskedasticity," Papers 2406.03053, arXiv.org, revised Jun 2024.
    2. Ivan Mendieta-Munoz & Mengheng Li, 2019. "The Multivariate Simultaneous Unobserved Compenents Model and Identification via Heteroskedasticity," Working Paper Series, Department of Economics, University of Utah 2019_06, University of Utah, Department of Economics.
    3. Lütkepohl, Helmut & Woźniak, Tomasz, 2020. "Bayesian inference for structural vector autoregressions identified by Markov-switching heteroskedasticity," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    4. Thomas Chuffart & Cyril Dell'Eva, 2020. "The role of carry trades on the effectiveness of Japan's quantitative easing," International Economics, CEPII research center, issue 161, pages 30-40.
    5. repec:zbw:bofrdp:2018_025 is not listed on IDEAS
    6. Puonti, Päivi, 2019. "Data-driven structural BVAR analysis of unconventional monetary policy," Journal of Macroeconomics, Elsevier, vol. 61(C), pages 1-1.
    7. Yanlin Shi, 2023. "A new unique impulse response function in linear vector autoregressive models," International Review of Finance, International Review of Finance Ltd., vol. 23(2), pages 460-468, June.
    8. Tölö, Eero & Miettinen, Paavo, 2018. "How do shocks to bank capital affect lending and growth?," Bank of Finland Research Discussion Papers 25/2018, Bank of Finland.
    9. Tölö, Eero & Miettinen, Paavo, 2018. "How do shocks to bank capital affect lending and growth?," Research Discussion Papers 25/2018, Bank of Finland.
    10. repec:prg:jnlpep:v:preprint:id:699:p:1-20 is not listed on IDEAS
    11. Zulfiqar Ali Wagan & Zhang Chen & Hakimzadi Wagan, 2019. "A Factor-Augmented Vector Autoregressive Approach to Analyze the Transmission of Monetary Policy," Prague Economic Papers, Prague University of Economics and Business, vol. 2019(6), pages 709-728.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominik Bertsche & Robin Braun, 2022. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 328-341, January.
    2. Lutz Kilian, 2013. "Structural vector autoregressions," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 22, pages 515-554, Edward Elgar Publishing.
    3. Francesco Furlanetto & Francesco Ravazzolo & Samad Sarferaz, 2019. "Identification of Financial Factors in Economic Fluctuations," The Economic Journal, Royal Economic Society, vol. 129(617), pages 311-337.
    4. Alessio Volpicella, 2022. "SVARs Identification Through Bounds on the Forecast Error Variance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1291-1301, June.
    5. Helmut Lütkepohl & Aleksei NetŠunajev, 2014. "Disentangling Demand And Supply Shocks In The Crude Oil Market: How To Check Sign Restrictions In Structural Vars," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 479-496, April.
    6. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    7. Victor Pontines, 2021. "The real effects of loan-to-value limits: empirical evidence from Korea," Empirical Economics, Springer, vol. 61(3), pages 1311-1350, September.
    8. Helmut Herwartz & Alexander Lange & Simone Maxand, 2022. "Data‐driven identification in SVARs—When and how can statistical characteristics be used to unravel causal relationships?," Economic Inquiry, Western Economic Association International, vol. 60(2), pages 668-693, April.
    9. Mayer, Eric & Rüth, Sebastian & Scharler, Johann, 2016. "Total factor productivity and the propagation of shocks: Empirical evidence and implications for the business cycle," Journal of Macroeconomics, Elsevier, vol. 50(C), pages 335-346.
    10. Lütkepohl, Helmut & Netšunajev, Aleksei, 2017. "Structural vector autoregressions with heteroskedasticity: A review of different volatility models," Econometrics and Statistics, Elsevier, vol. 1(C), pages 2-18.
    11. Klug, Thorsten & Mayer, Eric & Schuler, Tobias, 2022. "The corporate saving glut and the current account in Germany," Journal of International Money and Finance, Elsevier, vol. 121(C).
    12. Helmut Herwartz & Martin Plödt, 2016. "Simulation Evidence on Theory-based and Statistical Identification under Volatility Breaks," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(1), pages 94-112, February.
    13. Arigoni, Filippo & Lenarčič, Črt, 2020. "The impact of trade policy uncertainty shocks on the Euro Area," MPRA Paper 100832, University Library of Munich, Germany.
    14. Danne, Christian, 2015. "VARsignR: Estimating VARs using sign restrictions in R," MPRA Paper 68429, University Library of Munich, Germany.
    15. Herwartz, Helmut & Rohloff, Hannes & Wang, Shu, 2020. "Proxy SVAR identification of monetary policy shocks: MonteCarlo evidence and insights for the US," University of Göttingen Working Papers in Economics 404, University of Goettingen, Department of Economics.
    16. Herwartz, Helmut & Wang, Shu, 2023. "Point estimation in sign-restricted SVARs based on independence criteria with an application to rational bubbles," Journal of Economic Dynamics and Control, Elsevier, vol. 151(C).
    17. Uhrin, Gábor B. & Herwartz, Helmut, 2016. "Monetary policy shocks, set-identifying restrictions, and asset prices: A benchmarking approach for analyzing set-identified models," University of Göttingen Working Papers in Economics 295, University of Goettingen, Department of Economics.
    18. Herwartz, Helmut & Lütkepohl, Helmut, 2014. "Structural vector autoregressions with Markov switching: Combining conventional with statistical identification of shocks," Journal of Econometrics, Elsevier, vol. 183(1), pages 104-116.
    19. Tommy Wu & Michael Cheng & Ken Wong, 2017. "Bayesian analysis of Hong Kong's housing price dynamics," Pacific Economic Review, Wiley Blackwell, vol. 22(3), pages 312-331, August.
    20. Britta Gehrke & Fang Yao, 2016. "Persistence and volatility of real exchange rates: the role of supply shocks revisited," Reserve Bank of New Zealand Discussion Paper Series DP2016/02, Reserve Bank of New Zealand.

    More about this item

    Keywords

    Structural vector autoregression; independence; posterior model probability; monetary policy shock;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2016-04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.