IDEAS home Printed from https://ideas.repec.org/h/zbw/hwwich/281006.html
   My bibliography  Save this book chapter

Datenwirtschaft: Was ist neu und anders?

In: Neuvermessung der Datenökonomie

Author

Listed:
  • Straubhaar, Thomas

Abstract

No abstract is available for this item.

Suggested Citation

  • Straubhaar, Thomas, 2021. "Datenwirtschaft: Was ist neu und anders?," Edition HWWI: Chapters, in: Straubhaar, Thomas (ed.), Neuvermessung der Datenökonomie, volume 6, pages 9-25, Hamburg Institute of International Economics (HWWI).
  • Handle: RePEc:zbw:hwwich:281006
    DOI: 10.15460/hup.254.1921
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/281006/1/1876269510.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.15460/hup.254.1921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dominik H. Enste, 2019. "Verluste der Unternehmen durch Schwarzarbeit [Companies’ loss due to competitors’ undeclared work]," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 99(2), pages 152-154, February.
    2. Brynjolfsson, Erik & Collis, Avinash & Diewert, W. Erwin & Eggers, Felix & Fox, Kevin J., 2019. "GDP-B: Accounting for the Value of New and Free Goods in the Digital Economy," OSF Preprints sptfu, Center for Open Science.
    3. Stone,Richard, 2013. "The Role of Measurement in Economics," Cambridge Books, Cambridge University Press, number 9781107673861, October.
    4. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    5. Diane Coyle, 2014. "GDP: A Brief but Affectionate History," Economics Books, Princeton University Press, edition 1, number 10183.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    2. Patrick Bajari & Victor Chernozhukov & Ali Hortaçsu & Junichi Suzuki, 2019. "The Impact of Big Data on Firm Performance: An Empirical Investigation," AEA Papers and Proceedings, American Economic Association, vol. 109, pages 33-37, May.
    3. Nathan, Max & Rosso, Anna, 2014. "Mapping information economy businesses with big data: findings from the UK," LSE Research Online Documents on Economics 60615, London School of Economics and Political Science, LSE Library.
    4. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    5. Elert, Niklas & Henrekson, Magnus, 2017. "Entrepreneurship and Institutions: A Bidirectional Relationship," Working Paper Series 1153, Research Institute of Industrial Economics, revised 05 May 2017.
    6. Nicodemo, Catia & Satorra, Albert, 2020. "Exploratory Data Analysis on Large Data Sets: The Example of Salary Variation in Spanish Social Security Data," IZA Discussion Papers 13459, Institute of Labor Economics (IZA).
    7. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    8. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    9. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    10. Edward Castronova, 2023. "Preference evolution, attention, and happiness," Kyklos, Wiley Blackwell, vol. 76(2), pages 301-315, May.
    11. Lidia Ceriani & Sergio Olivieri & Marco Ranzani, 2023. "Housing, imputed rent, and household welfare," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 21(1), pages 131-168, March.
    12. Croux, Christophe & Jagtiani, Julapa & Korivi, Tarunsai & Vulanovic, Milos, 2020. "Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform," Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 270-296.
    13. Leif Anders Thorsrud, 2016. "Nowcasting using news topics. Big Data versus big bank," Working Paper 2016/20, Norges Bank.
    14. Matteo Iacopini & Carlo R.M.A. Santagiustina, 2021. "Filtering the intensity of public concern from social media count data with jumps," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1283-1302, October.
    15. Lopez Cordova,Jose Ernesto, 2020. "Digital Platforms and the Demand for International Tourism Services," Policy Research Working Paper Series 9147, The World Bank.
    16. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    17. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    18. Jens Ludwig & Sendhil Mullainathan, 2021. "Fragile Algorithms and Fallible Decision-Makers: Lessons from the Justice System," Journal of Economic Perspectives, American Economic Association, vol. 35(4), pages 71-96, Fall.
    19. Katsuyuki Tanaka & Takuji Kinkyo & Shigeyuki Hamori, 2018. "Financial Hazard Map: Financial Vulnerability Predicted by a Random Forests Classification Model," Sustainability, MDPI, vol. 10(5), pages 1-18, May.
    20. Halko, Marja-Liisa & Lappalainen, Olli & Sääksvuori, Lauri, 2021. "Do non-choice data reveal economic preferences? Evidence from biometric data and compensation-scheme choice," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 87-104.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hwwich:281006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/hwwiide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.