IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-3-030-04726-9_3.html
   My bibliography  Save this book chapter

Incentive-Based Rebalancing of Bike-Sharing Systems

In: Advances in Service Science

Author

Listed:
  • Samarth J. Patel

    (The Pennsylvania State University)

  • Robin Qiu

    (The Pennsylvania State University)

  • Ashkan Negahban

    (The Pennsylvania State University)

Abstract

This paper proposes an incentive-based approach for rebalancing bike-sharing systems where customers are offered discount to pick up bikes from nearby stations that are expected to become full in the near future. The main contribution of this work is twofold: (1) we develop a customized station object in the Simio simulation software to facilitate modeling of bike-sharing systems and reduce the burden on the modeler by eliminating the need to code the basic functionalities of a bike station; and, (2) we develop a discrete event simulation model of a real-world bike-sharing system (CitiBike) using instances of the customized station object to evaluate the effectiveness of pickup incentives in rebalancing the system. The model is calibrated using historic data and the results confirm the effectiveness of such incentive-based rebalancing scheme. More specifically, the results suggest that while incentives help improve bike availability in general throughout the system (i.e., better balance and service), offering too many incentives can in fact reduce total profit due to decreased marginal profit per ride.

Suggested Citation

  • Samarth J. Patel & Robin Qiu & Ashkan Negahban, 2019. "Incentive-Based Rebalancing of Bike-Sharing Systems," Springer Proceedings in Business and Economics, in: Hui Yang & Robin Qiu (ed.), Advances in Service Science, pages 21-30, Springer.
  • Handle: RePEc:spr:prbchp:978-3-030-04726-9_3
    DOI: 10.1007/978-3-030-04726-9_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fukushige, Tatsuya & Fitch, Dillon T. & Handy, Susan, 2022. "Can an Incentive-Based approach to rebalancing a Dock-less Bike-share system Work? Evidence from Sacramento, California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 181-194.
    2. Negahban, Ashkan, 2019. "Simulation-based estimation of the real demand in bike-sharing systems in the presence of censoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 317-332.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-3-030-04726-9_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.