IDEAS home Printed from https://ideas.repec.org/h/pal/dofeco/v4year2010doi3826.html
   My bibliography  Save this book chapter

multiple testing

Author

Listed:
  • Joseph P. Romano
  • Azeem M. Shaikh
  • Michael Wolf

Abstract

Multiple testing refers to any instance that involves the simultaneous testing of more than one hypothesis. If decisions about the individual hypotheses are based on the unadjusted marginal p-values, then there is typically a large probability that some of the true null hypotheses will be rejected. Unfortunately, such a course of action is still common. In this article, we describe the problem of multiple testing more formally and discuss methods which account for the multiplicity issue. In particular, recent developments based on resampling result in an improved ability to reject false hypotheses compared to classical methods such as Bonferroni.

Suggested Citation

  • Joseph P. Romano & Azeem M. Shaikh & Michael Wolf, 2010. "multiple testing," The New Palgrave Dictionary of Economics,, Palgrave Macmillan.
  • Handle: RePEc:pal:dofeco:v:4:year:2010:doi:3826
    as

    Download full text from publisher

    File URL: http://www.dictionaryofeconomics.com/article?id=pde2010_M000425
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cushman, David O. & De Vita, Glauco, 2017. "Exchange rate regimes and FDI in developing countries: A propensity score matching approach," Journal of International Money and Finance, Elsevier, vol. 77(C), pages 143-163.
    2. Tania Singer & Ernst Fehr, 2005. "The Neuroeconomics of Mind Reading and Empathy," American Economic Review, American Economic Association, vol. 95(2), pages 340-345, May.
    3. Laurent Barras & Olivier Scaillet & Russ Wermers, 2010. "False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas," Journal of Finance, American Finance Association, vol. 65(1), pages 179-216, February.
    4. Joseph Romano & Azeem Shaikh & Michael Wolf, 2008. "Control of the false discovery rate under dependence using the bootstrap and subsampling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(3), pages 417-442, November.
    5. Goldman, Matt & Kaplan, David M., 2018. "Comparing distributions by multiple testing across quantiles or CDF values," Journal of Econometrics, Elsevier, vol. 206(1), pages 143-166.
    6. Romano, Joseph P. & Shaikh, Azeem M. & Wolf, Michael, 2008. "Formalized Data Snooping Based On Generalized Error Rates," Econometric Theory, Cambridge University Press, vol. 24(2), pages 404-447, April.
    7. Sneha Elango & Jorge Luis García & James J. Heckman & Andrés Hojman, 2015. "Early Childhood Education," NBER Chapters, in: Economics of Means-Tested Transfer Programs in the United States, Volume 2, pages 235-297, National Bureau of Economic Research, Inc.
    8. Armin Falk & Ernst Fehr & Christian Zehnder, "undated". "The Behavioral Effects of Minimum Wages," IEW - Working Papers 247, Institute for Empirical Research in Economics - University of Zurich.
    9. David Afshartous & Michael Wolf, 2007. "Avoiding ‘data snooping’ in multilevel and mixed effects models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 1035-1059, October.
    10. Joseph P. Romano & Michael Wolf, 2008. "Balanced Control of Generalized Error Rates," IEW - Working Papers 379, Institute for Empirical Research in Economics - University of Zurich.
    11. Joseph P. Romano & Azeem M. Shaikh & Michael Wolf, 2010. "Hypothesis Testing in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 75-104, September.

    More about this item

    Keywords

    Multiple Testing; Familywise Error Rate; real estate finance; Resampling;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:dofeco:v:4:year:2010:doi:3826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sheeja Sanoj (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.