IDEAS home Printed from https://ideas.repec.org/h/elg/eechap/15019_9.html
   My bibliography  Save this book chapter

National energy strategies of major industrialized countries

In: International Handbook of Energy Security

Author

Listed:
  • Stephan Schott
  • Graham Campbell

Abstract

This Handbook brings together energy security experts to explore the implications of framing the energy debate in security terms, both in respect of the governance of energy systems and the practices associated with energy security.

Suggested Citation

  • Stephan Schott & Graham Campbell, 2013. "National energy strategies of major industrialized countries," Chapters, in: Hugh Dyer & Maria Julia Trombetta (ed.), International Handbook of Energy Security, chapter 9, pages 174-205, Edward Elgar Publishing.
  • Handle: RePEc:elg:eechap:15019_9
    as

    Download full text from publisher

    File URL: https://www.elgaronline.com/view/9781781007891.00019.xml
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duffield, John S. & Woodall, Brian, 2011. "Japan's new basic energy plan," Energy Policy, Elsevier, vol. 39(6), pages 3741-3749, June.
    2. Chester, Lynne, 2010. "Conceptualising energy security and making explicit its polysemic nature," Energy Policy, Elsevier, vol. 38(2), pages 887-895, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephan Schott, 2013. "Carbon Pricing Options for Canada," Canadian Public Policy, University of Toronto Press, vol. 39(s2), pages 109-124, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vivoda, Vlado, 2012. "Japan’s energy security predicament post-Fukushima," Energy Policy, Elsevier, vol. 46(C), pages 135-143.
    2. Elena Vechkinzova & Yelena Petrenko & Yana S. Matkovskaya & Gaukhar Koshebayeva, 2021. "The Dilemma of Long-Term Development of the Electric Power Industry in Kazakhstan," Energies, MDPI, vol. 14(9), pages 1-21, April.
    3. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    4. Odysseas Christou, 2021. "Energy Security in Turbulent Times Towards the European Green Deal," Politics and Governance, Cogitatio Press, vol. 9(3), pages 360-369.
    5. Siqi Li & Rongrong Li, 2017. "Energy Sustainability Evaluation Model Based on the Matter-Element Extension Method: A Case Study of Shandong Province, China," Sustainability, MDPI, vol. 9(11), pages 1-9, November.
    6. Evgeny Lisin & Wadim Strielkowski & Veronika Chernova & Alena Fomina, 2018. "Assessment of the Territorial Energy Security in the Context of Energy Systems Integration," Energies, MDPI, vol. 11(12), pages 1-14, November.
    7. Gelengul KOCASLAN, 2014. "International Energy Security Indicators and Turkey s Energy Security Risk Score," International Journal of Energy Economics and Policy, Econjournals, vol. 4(4), pages 735-743.
    8. Benedict Belobo Ateba & Johannes Jurgens Prinsloo, 2018. "The Electricity Security in South Africa: Analysing Significant Determinants to the Grid Reliability," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 70-79.
    9. Blarke, Morten B. & Jenkins, Bryan M., 2013. "SuperGrid or SmartGrid: Competing strategies for large-scale integration of intermittent renewables?," Energy Policy, Elsevier, vol. 58(C), pages 381-390.
    10. Clement Bonnet & Samuel Carcanague & Emmanuel Hache & Gondia Seck & Marine Simoën, 2019. "Vers une Géopolitique de l'énergie plus complexe ? Une analyse prospective tridimensionnelle de la transition énergétique," Working Papers hal-02971706, HAL.
    11. Itay Fischhendler & David Katz, 2013. "The use of “security” jargon in sustainable development discourse: evidence from UN Commission on Sustainable Development," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 13(3), pages 321-342, September.
    12. Chuang, Ming Chih & Ma, Hwong Wen, 2013. "Energy security and improvements in the function of diversity indices—Taiwan energy supply structure case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 9-20.
    13. Kisel, Einari & Hamburg, Arvi & Härm, Mihkel & Leppiman, Ando & Ots, Märt, 2016. "Concept for Energy Security Matrix," Energy Policy, Elsevier, vol. 95(C), pages 1-9.
    14. Yang, Xin & Zhou, Xiaohe & Deng, Xiangzheng, 2022. "Modeling farmers’ adoption of low-carbon agricultural technology in Jianghan Plain, China: An examination of the theory of planned behavior," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    15. Liu, Litao & Cao, Zhi & Liu, Xiaojie & Shi, Lei & Cheng, Shengkui & Liu, Gang, 2020. "Oil security revisited: An assessment based on complex network analysis," Energy, Elsevier, vol. 194(C).
    16. Sauvageot, Eric Pardo, 2020. "Between Russia as producer and Ukraine as a transit country: EU dilemma of interdependence and energy security," Energy Policy, Elsevier, vol. 145(C).
    17. Yurii Kharazishvili & Aleksy Kwilinski & Oleksandr Sukhodolia & Henryk Dzwigol & Dmytro Bobro & Janusz Kotowicz, 2021. "The Systemic Approach for Estimating and Strategizing Energy Security: The Case of Ukraine," Energies, MDPI, vol. 14(8), pages 1-30, April.
    18. Banos-González, Isabel & Martínez-Fernández, Julia & Esteve-Selma, Miguel Ángel, 2015. "Dynamic integration of sustainability indicators in insular socio-ecological systems," Ecological Modelling, Elsevier, vol. 306(C), pages 130-144.
    19. Leman ERDAL, 2015. "Determinants of Energy Supply Security: An Econometric Analysis For Turkey," Ege Academic Review, Ege University Faculty of Economics and Administrative Sciences, vol. 15(2), pages 153-163.
    20. Chowdhury, Sanjeeda & Sumita, Ushio & Islam, Ashraful & Bedja, Idriss, 2014. "Importance of policy for energy system transformation: Diffusion of PV technology in Japan and Germany," Energy Policy, Elsevier, vol. 68(C), pages 285-293.

    More about this item

    Keywords

    Economics and Finance; Environment;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:elg:eechap:15019_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Darrel McCalla (email available below). General contact details of provider: http://www.e-elgar.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.