IDEAS home Printed from https://ideas.repec.org/h/eee/ecofch/1-11.html
   My bibliography  Save this book chapter

Forecasting with Trending Data

In: Handbook of Economic Forecasting

Author

Listed:
  • Elliott, Graham

Abstract

This chapter examines the problems of dealing with trending type data when there is uncertainty over whether or not we really have unit roots in the data. This uncertainty is practical - for many macroeconomic and financial variables theory does not imply a unit root in the data however unit root tests fail to reject. This means that there may be a unit root or roots close to the unit circle. We first examine the differences between results using stationary predictors and nonstationary or near nonstationary predictors. Unconditionally, the contribution of parameter estimation error to expected loss is of the same order for stationary and nonstationary variables despite the faster convergence of the parameter estimates. However expected losses depend on true parameter values. We then review univariate and multivariate forecasting in a framework where there is uncertainty over the trend. In univariate models we examine trade-offs between estimators in the short and long run. Estimation of parameters for most models dominates imposing a unit root. It is for these models that the effects of nuisance parameters in the models is clearest. For multivariate models we examine forecasting from cointegrating models as well as examine the effects of erroneously assuming cointegration. It is shown that inconclusive theoretical implications arise from the dependence of forecast performance on nuisance parameters. Depending on these nuisance parameters imposing cointegration can be more or less useful for different horizons. The problem of forecasting variables with trending regressors - for example, forecasting stock returns with the dividend-price ratio - is evaluated analytically. The literature on distortion in inference in such models is reviewed. Finally, forecast evaluation for these problems is discussed.

Suggested Citation

  • Elliott, Graham, 2006. "Forecasting with Trending Data," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 11, pages 555-604, Elsevier.
  • Handle: RePEc:eee:ecofch:1-11
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/B7P5J-4JSMTWJ-G/2/6ae0e11c788ad4d87fb457584124bacd
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Josef Baumgartner, 2008. "Die Preistransmission entlang der Wertschöpfungskette in Österreich für ausgewählte Produktgruppen," WIFO Studies, WIFO, number 33139, April.
    2. Athanasopoulos, George & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor & Vahid, Farshid, 2011. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Journal of Econometrics, Elsevier, vol. 164(1), pages 116-129, September.
    3. Goulet Coulombe, Philippe & Leroux, Maxime & Stevanovic, Dalibor & Surprenant, Stéphane, 2021. "Macroeconomic data transformations matter," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1338-1354.
    4. Raffaella Giacomini, 2015. "Economic theory and forecasting: lessons from the literature," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 22-41, June.
    5. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, October.
    6. Heather Anderson & Howard Chan & Robert Faff & Yew Kee Ho, 2012. "Reported earnings and analyst forecasts as competing sources of information: A new approach," Australian Journal of Management, Australian School of Business, vol. 37(3), pages 333-359, December.
    7. Miller, J. Isaac, 2018. "Simple robust tests for the specification of high-frequency predictors of a low-frequency series," Econometrics and Statistics, Elsevier, vol. 5(C), pages 45-66.
    8. Müller, Ulrich K. & Wang, Yulong, 2019. "Nearly weighted risk minimal unbiased estimation," Journal of Econometrics, Elsevier, vol. 209(1), pages 18-34.
    9. Chevillon, Guillaume, 2017. "Robustness of Multistep Forecasts and Predictive Regressions at Intermediate and Long Horizons," ESSEC Working Papers WP1710, ESSEC Research Center, ESSEC Business School.
    10. Heather M Anderson & Farshid Vahid, 2010. "VARs, Cointegration and Common Cycle Restrictions," Monash Econometrics and Business Statistics Working Papers 14/10, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    JEL classification:

    • B0 - Schools of Economic Thought and Methodology - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofch:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/bookseriesdescription.cws_home/BS_HE/description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.