IDEAS home Printed from https://ideas.repec.org/f/ptr398.html
   My authors  Follow this author

Carlos Trucíos
(Carlos Trucios)

Personal Details

First Name:Carlos
Middle Name:
Last Name:Trucios
Suffix:
RePEc Short-ID:ptr398
[This author has chosen not to make the email address public]
https://ctruciosm.github.io

Affiliation

Universidade Estadual de Campinas, Departamento de Estatística.

https://www.ime.unicamp.br/
Brazil, Campinas/SP
13083-859

Research output

as
Jump to: Working papers Articles

Working papers

  1. Marc Hallin & Carlos Trucíos, 2020. "Forecasting Value-at-Risk and Expected Shortfall in Large Portfolios: a General Dynamic Factor Approach," Working Papers ECARES 2020-50, ULB -- Universite Libre de Bruxelles.
  2. Trucíos Maza, Carlos César & Mazzeu, João H. G. & Hotta, Luiz Koodi & Pereira, Pedro L. Valls & Hallin, Marc, 2020. "Robustness and the general dynamic factor model with infinite-dimensional space: identification, estimation, and forecasting," Textos para discussão 521, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
  3. Carlos Cesar Trucios-Maza & João H. G Mazzeu & Luis K. Hotta & Pedro L. Valls Pereira & Marc Hallin, 2019. "On the robustness of the general dynamic factor model with infinite-dimensional space: identification, estimation, and forecasting," Working Papers ECARES 2019-32, ULB -- Universite Libre de Bruxelles.
  4. Marc Hallin & Luis K. Hotta & João H. G Mazzeu & Carlos Cesar Trucios-Maza & Pedro L. Valls Pereira & Mauricio Zevallos, 2019. "Forecasting Conditional Covariance Matrices in High-Dimensional Time Series: a General Dynamic Factor Approach," Working Papers ECARES 2019-14, ULB -- Universite Libre de Bruxelles.
  5. Hotta, Luiz & Trucíos, Carlos, 2015. "Robust bootstrap forecast densities for GARCH models: returns, volatilities and value-at-risk," DES - Working Papers. Statistics and Econometrics. WS ws1523, Universidad Carlos III de Madrid. Departamento de Estadística.

Articles

  1. Hallin, Marc & Trucíos, Carlos, 2023. "Forecasting value-at-risk and expected shortfall in large portfolios: A general dynamic factor model approach," Econometrics and Statistics, Elsevier, vol. 27(C), pages 1-15.
  2. Carlos Trucíos & James W. Taylor, 2023. "A comparison of methods for forecasting value at risk and expected shortfall of cryptocurrencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 989-1007, July.
  3. Carlos Trucíos & João H. G. Mazzeu & Marc Hallin & Luiz K. Hotta & Pedro L. Valls Pereira & Mauricio Zevallos, 2022. "Forecasting Conditional Covariance Matrices in High-Dimensional Time Series: A General Dynamic Factor Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 40-52, December.
  4. Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021. "Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.
  5. Carlos Trucíos & Aviral K. Tiwari & Faisal Alqahtani, 2020. "Value-at-risk and expected shortfall in cryptocurrencies’ portfolio: a vine copula–based approach," Applied Economics, Taylor & Francis Journals, vol. 52(24), pages 2580-2593, May.
  6. Carlos Trucíos & Mauricio Zevallos & Luiz K. Hotta & André A. P. Santos, 2019. "Covariance Prediction in Large Portfolio Allocation," Econometrics, MDPI, vol. 7(2), pages 1-24, May.
  7. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
  8. Trucíos, Carlos & Hotta, Luiz K. & Valls Pereira, Pedro L., 2019. "On the robustness of the principal volatility components," Journal of Empirical Finance, Elsevier, vol. 52(C), pages 201-219.
  9. Trucíos, Carlos & Hotta, Luiz K., 2016. "Bootstrap prediction in univariate volatility models with leverage effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 120(C), pages 91-103.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Trucíos Maza, Carlos César & Mazzeu, João H. G. & Hotta, Luiz Koodi & Pereira, Pedro L. Valls & Hallin, Marc, 2020. "Robustness and the general dynamic factor model with infinite-dimensional space: identification, estimation, and forecasting," Textos para discussão 521, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).

    Cited by:

    1. Hallin, Marc & Trucíos, Carlos, 2023. "Forecasting value-at-risk and expected shortfall in large portfolios: A general dynamic factor model approach," Econometrics and Statistics, Elsevier, vol. 27(C), pages 1-15.
    2. Boudt, Kris & Heyndels, Ewoud, 2024. "Robust interactive fixed effects," Econometrics and Statistics, Elsevier, vol. 29(C), pages 206-223.
    3. Escribano, Alvaro & Peña, Daniel & Ruiz, Esther, 2021. "30 years of cointegration and dynamic factor models forecasting and its future with big data: Editorial," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1333-1337.
    4. Marc Hallin & Carlos Trucíos, 2020. "Forecasting Value-at-Risk and Expected Shortfall in Large Portfolios: a General Dynamic Factor Approach," Working Papers ECARES 2020-50, ULB -- Universite Libre de Bruxelles.

  2. Marc Hallin & Luis K. Hotta & João H. G Mazzeu & Carlos Cesar Trucios-Maza & Pedro L. Valls Pereira & Mauricio Zevallos, 2019. "Forecasting Conditional Covariance Matrices in High-Dimensional Time Series: a General Dynamic Factor Approach," Working Papers ECARES 2019-14, ULB -- Universite Libre de Bruxelles.

    Cited by:

    1. Carlos Cesar Trucios-Maza & João H. G Mazzeu & Luis K. Hotta & Pedro L. Valls Pereira & Marc Hallin, 2019. "On the robustness of the general dynamic factor model with infinite-dimensional space: identification, estimation, and forecasting," Working Papers ECARES 2019-32, ULB -- Universite Libre de Bruxelles.
    2. Matteo Barigozzi & Marc Hallin & Matteo Luciani & Paolo Zaffaroni, 2021. "Inferential Theory for Generalized Dynamic Factor Models," Working Papers ECARES 2021-20, ULB -- Universite Libre de Bruxelles.
    3. Trucíos Maza, Carlos César & Mazzeu, João H. G. & Hotta, Luiz Koodi & Pereira, Pedro L. Valls & Hallin, Marc, 2020. "Robustness and the general dynamic factor model with infinite-dimensional space: identification, estimation, and forecasting," Textos para discussão 521, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    4. Marc Hallin & Carlos Trucíos, 2020. "Forecasting Value-at-Risk and Expected Shortfall in Large Portfolios: a General Dynamic Factor Approach," Working Papers ECARES 2020-50, ULB -- Universite Libre de Bruxelles.

  3. Hotta, Luiz & Trucíos, Carlos, 2015. "Robust bootstrap forecast densities for GARCH models: returns, volatilities and value-at-risk," DES - Working Papers. Statistics and Econometrics. WS ws1523, Universidad Carlos III de Madrid. Departamento de Estadística.

    Cited by:

    1. Trucíos Maza, Carlos César & Hotta, Luiz Koodi & Pereira, Pedro L. Valls, 2018. "On the robustness of the principal volatility components," Textos para discussão 474, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    2. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    3. Trucíos, Carlos & Hotta, Luiz K., 2016. "Bootstrap prediction in univariate volatility models with leverage effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 120(C), pages 91-103.

Articles

  1. Carlos Trucíos & James W. Taylor, 2023. "A comparison of methods for forecasting value at risk and expected shortfall of cryptocurrencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 989-1007, July.

    Cited by:

    1. Fantazzini, Dean, 2024. "Adaptive Conformal Inference for computing Market Risk Measures: an Analysis with Four Thousands Crypto-Assets," MPRA Paper 121214, University Library of Munich, Germany.
    2. Hotta, Luiz Koodi & Trucíos Maza, Carlos César & Pereira, Pedro L. Valls & Zevallos Herencia, Mauricio Henrique, 2024. "Forecasting VaR and ES through Markov-switching GARCH models: does the specication matter?," Textos para discussão 567, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).

  2. Carlos Trucíos & João H. G. Mazzeu & Marc Hallin & Luiz K. Hotta & Pedro L. Valls Pereira & Mauricio Zevallos, 2022. "Forecasting Conditional Covariance Matrices in High-Dimensional Time Series: A General Dynamic Factor Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 40-52, December.
    See citations under working paper version above.
  3. Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021. "Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.
    See citations under working paper version above.
  4. Carlos Trucíos & Aviral K. Tiwari & Faisal Alqahtani, 2020. "Value-at-risk and expected shortfall in cryptocurrencies’ portfolio: a vine copula–based approach," Applied Economics, Taylor & Francis Journals, vol. 52(24), pages 2580-2593, May.

    Cited by:

    1. Hallin, Marc & Trucíos, Carlos, 2023. "Forecasting value-at-risk and expected shortfall in large portfolios: A general dynamic factor model approach," Econometrics and Statistics, Elsevier, vol. 27(C), pages 1-15.
    2. Fernanda Maria Müller & Marcelo Brutti Righi, 2024. "Comparison of Value at Risk (VaR) Multivariate Forecast Models," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 75-110, January.
    3. Abdullah, Mohammad & Abakah, Emmanuel Joel Aikins & Wali Ullah, G M & Tiwari, Aviral Kumar & Khan, Isma, 2023. "Tail risk contagion across electricity markets in crisis periods," Energy Economics, Elsevier, vol. 127(PB).
    4. Chuffart, Thomas, 2022. "Interest in cryptocurrencies predicts conditional correlation dynamics," Finance Research Letters, Elsevier, vol. 46(PA).
    5. Bergsli, Lykke Øverland & Lind, Andrea Falk & Molnár, Peter & Polasik, Michał, 2022. "Forecasting volatility of Bitcoin," Research in International Business and Finance, Elsevier, vol. 59(C).
    6. Ravi Kashyap, 2024. "The Concentration Risk Indicator: Raising the Bar for Financial Stability and Portfolio Performance Measurement," Papers 2408.07271, arXiv.org.
    7. Fernanda Maria Müller & Thalles Weber Gössling & Samuel Solgon Santos & Marcelo Brutti Righi, 2024. "A comparison of Range Value at Risk (RVaR) forecasting models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 509-543, April.
    8. Marc Hallin & Carlos Trucíos, 2020. "Forecasting Value-at-Risk and Expected Shortfall in Large Portfolios: a General Dynamic Factor Approach," Working Papers ECARES 2020-50, ULB -- Universite Libre de Bruxelles.
    9. Rebekka Buse & Konstantin Gorgen & Melanie Schienle, 2022. "Predicting Value at Risk for Cryptocurrencies With Generalized Random Forests," Papers 2203.08224, arXiv.org, revised Dec 2024.
    10. Osman, Myriam Ben & Galariotis, Emilios & Guesmi, Khaled & Hamdi, Haykel & Naoui, Kamel, 2023. "Diversification in financial and crypto markets," International Review of Financial Analysis, Elsevier, vol. 89(C).
    11. Müller, Fernanda Maria & Santos, Samuel Solgon & Gössling, Thalles Weber & Righi, Marcelo Brutti, 2022. "Comparison of risk forecasts for cryptocurrencies: A focus on Range Value at Risk," Finance Research Letters, Elsevier, vol. 48(C).
    12. Guo, Zi-Yi, 2022. "Risk management of Bitcoin futures with GARCH models," Finance Research Letters, Elsevier, vol. 45(C).

  5. Carlos Trucíos & Mauricio Zevallos & Luiz K. Hotta & André A. P. Santos, 2019. "Covariance Prediction in Large Portfolio Allocation," Econometrics, MDPI, vol. 7(2), pages 1-24, May.

    Cited by:

    1. Lucien Boulet, 2021. "Forecasting High-Dimensional Covariance Matrices of Asset Returns with Hybrid GARCH-LSTMs," Papers 2109.01044, arXiv.org.
    2. Prayut Jain & Shashi Jain, 2019. "Can Machine Learning-Based Portfolios Outperform Traditional Risk-Based Portfolios? The Need to Account for Covariance Misspecification," Risks, MDPI, vol. 7(3), pages 1-27, July.
    3. Michael Curran & Patrick O'Sullivan & Ryan Zalla, 2022. "Can Volatility Solve the Naive Portfolio Puzzle?," Villanova School of Business Department of Economics and Statistics Working Paper Series 52, Villanova School of Business Department of Economics and Statistics.

  6. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.

    Cited by:

    1. Fasanya, Ismail O. & Oyewole, Oluwatomisin J. & Oliyide, Johnson A., 2022. "Investors' sentiments and the dynamic connectedness between cryptocurrency and precious metals markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 347-364.
    2. Ke, Rui & Yang, Luyao & Tan, Changchun, 2022. "Forecasting tail risk for Bitcoin: A dynamic peak over threshold approach," Finance Research Letters, Elsevier, vol. 49(C).
    3. Lyócsa, Štefan & Molnár, Peter & Plíhal, Tomáš & Širaňová, Mária, 2020. "Impact of macroeconomic news, regulation and hacking exchange markets on the volatility of bitcoin," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
    4. Cheikh, Nidhaleddine Ben & Zaied, Younes Ben & Chevallier, Julien, 2020. "Asymmetric volatility in cryptocurrency markets: New evidence from smooth transition GARCH models," Finance Research Letters, Elsevier, vol. 35(C).
    5. Wilson Calmon & Eduardo Ferioli & Davi Lettieri & Johann Soares & Adrian Pizzinga, 2021. "An Extensive Comparison of Some Well‐Established Value at Risk Methods," International Statistical Review, International Statistical Institute, vol. 89(1), pages 148-166, April.
    6. Karim, Muhammad Mahmudul & Ali, Md Hakim & Yarovaya, Larisa & Uddin, Md Hamid & Hammoudeh, Shawkat, 2023. "Return-volatility relationships in cryptocurrency markets: Evidence from asymmetric quantiles and non-linear ARDL approach," International Review of Financial Analysis, Elsevier, vol. 90(C).
    7. Dean Fantazzini & Stephan Zimin, 2020. "A multivariate approach for the simultaneous modelling of market risk and credit risk for cryptocurrencies," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 19-69, March.
    8. Bergsli, Lykke Øverland & Lind, Andrea Falk & Molnár, Peter & Polasik, Michał, 2022. "Forecasting volatility of Bitcoin," Research in International Business and Finance, Elsevier, vol. 59(C).
    9. Cristina Chinazzo & Vahidin Jeleskovic, 2024. "Forecasting Bitcoin Volatility: A Comparative Analysis of Volatility Approaches," Papers 2401.02049, arXiv.org.
    10. Chao Liang & Yaojie Zhang & Xiafei Li & Feng Ma, 2022. "Which predictor is more predictive for Bitcoin volatility? And why?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1947-1961, April.
    11. Yu, Xing & Li, Yanyan & Zhao, Qian, 2024. "Research on optimization strategy of futures hedging dependent on market state," Applied Energy, Elsevier, vol. 373(C).
    12. Kawakami, Tabito, 2023. "Quantile prediction for Bitcoin returns using financial assets’ realized measures," Finance Research Letters, Elsevier, vol. 55(PA).
    13. Mercik, Aleksander & Słoński, Tomasz & Karaś, Marta, 2024. "Understanding crypto-asset exposure: An investigation of its impact on performance and stock sensitivity among listed companies," International Review of Financial Analysis, Elsevier, vol. 92(C).
    14. Carlos Trucíos & James W. Taylor, 2023. "A comparison of methods for forecasting value at risk and expected shortfall of cryptocurrencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 989-1007, July.
    15. Fernanda Maria Müller & Thalles Weber Gössling & Samuel Solgon Santos & Marcelo Brutti Righi, 2024. "A comparison of Range Value at Risk (RVaR) forecasting models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 509-543, April.
    16. Yu, Xing & Li, Yanyan & Lu, Junli & Shen, Xilin, 2023. "Futures hedging in crude oil markets: A trade-off between risk and return," Resources Policy, Elsevier, vol. 80(C).
    17. Skander Slim & Ibrahim Tabche & Yosra Koubaa & Mohamed Osman & Andreas Karathanasopoulos, 2023. "Forecasting realized volatility of Bitcoin: The informative role of price duration," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1909-1929, November.
    18. Jui‐Cheng Hung & Hung‐Chun Liu & J. Jimmy Yang, 2023. "Does the tail risk index matter in forecasting downside risk?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 3451-3466, July.
    19. Tak Kuen Siu, 2023. "Bayesian nonlinear expectation for time series modelling and its application to Bitcoin," Empirical Economics, Springer, vol. 64(1), pages 505-537, January.
    20. Yaojie Zhang & Mengxi He & Danyan Wen & Yudong Wang, 2022. "Forecasting Bitcoin volatility: A new insight from the threshold regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 633-652, April.
    21. Ilhami KARAHANOGLU, 2020. "The VaR comparison of the fresh investment toolBITCOIN with other conventional investment tools, gold, stock exchange (BIST100) and foreign currencies (EUR/USD VS TRL)," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 11, pages 160-181, December.
    22. Kong, Xiaolin & Ma, Chaoqun & Ren, Yi-Shuai & Narayan, Seema & Nguyen, Thong Trung & Baltas, Konstantinos, 2023. "Changes in the market structure and risk management of Bitcoin and its forked coins," Research in International Business and Finance, Elsevier, vol. 65(C).
    23. Sasan Barak & Navid Parvini, 2023. "Transfer‐entropy‐based dynamic feature selection for evaluating Bitcoin price drivers," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(12), pages 1695-1726, December.
    24. Wang, Weichen & An, Ran & Zhu, Ziwei, 2024. "Volatility prediction comparison via robust volatility proxies: An empirical deviation perspective," Journal of Econometrics, Elsevier, vol. 239(2).
    25. Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
    26. Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2022. "Semi-nonparametric risk assessment with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
    27. Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
    28. Guo, Zi-Yi, 2022. "Risk management of Bitcoin futures with GARCH models," Finance Research Letters, Elsevier, vol. 45(C).

  7. Trucíos, Carlos & Hotta, Luiz K. & Valls Pereira, Pedro L., 2019. "On the robustness of the principal volatility components," Journal of Empirical Finance, Elsevier, vol. 52(C), pages 201-219.

    Cited by:

    1. Hallin, Marc & Trucíos, Carlos, 2023. "Forecasting value-at-risk and expected shortfall in large portfolios: A general dynamic factor model approach," Econometrics and Statistics, Elsevier, vol. 27(C), pages 1-15.
    2. Trucíos Maza, Carlos César & Mazzeu, João H. G. & Hallin, Marc & Hotta, Luiz Koodi & Pereira, Pedro L. Valls & Zevallos, Mauricio, 2019. "Forecasting conditional covariance matrices in high-dimensional time series: a general dynamic factor approach," Textos para discussão 505, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    3. Carlos Cesar Trucios-Maza & João H. G Mazzeu & Luis K. Hotta & Pedro L. Valls Pereira & Marc Hallin, 2019. "On the robustness of the general dynamic factor model with infinite-dimensional space: identification, estimation, and forecasting," Working Papers ECARES 2019-32, ULB -- Universite Libre de Bruxelles.
    4. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    5. Trucíos Maza, Carlos César & Mazzeu, João H. G. & Hotta, Luiz Koodi & Pereira, Pedro L. Valls & Hallin, Marc, 2020. "Robustness and the general dynamic factor model with infinite-dimensional space: identification, estimation, and forecasting," Textos para discussão 521, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    6. Marc Hallin & Carlos Trucíos, 2020. "Forecasting Value-at-Risk and Expected Shortfall in Large Portfolios: a General Dynamic Factor Approach," Working Papers ECARES 2020-50, ULB -- Universite Libre de Bruxelles.
    7. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.

  8. Trucíos, Carlos & Hotta, Luiz K., 2016. "Bootstrap prediction in univariate volatility models with leverage effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 120(C), pages 91-103.

    Cited by:

    1. Hotta, Luiz & Trucíos, Carlos, 2015. "Robust bootstrap forecast densities for GARCH models: returns, volatilities and value-at-risk," DES - Working Papers. Statistics and Econometrics. WS ws1523, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Mahsa Gorji & Rasoul Sajjad, 2017. "Improving Value-at-Risk Estimation from the Normal EGARCH Model," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 11(1), March.
    3. Trucíos Maza, Carlos César & Hotta, Luiz Koodi & Pereira, Pedro L. Valls, 2018. "On the robustness of the principal volatility components," Textos para discussão 474, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    4. Carlos Trucíos & James W. Taylor, 2023. "A comparison of methods for forecasting value at risk and expected shortfall of cryptocurrencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 989-1007, July.
    5. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 6 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-FOR: Forecasting (4) 2015-12-01 2020-01-06 2020-02-24 2021-01-04
  2. NEP-ECM: Econometrics (3) 2019-06-10 2020-01-06 2021-01-04
  3. NEP-ETS: Econometric Time Series (3) 2015-12-01 2019-06-10 2020-01-06
  4. NEP-ORE: Operations Research (3) 2020-01-06 2020-02-24 2021-01-04
  5. NEP-RMG: Risk Management (2) 2019-07-22 2021-01-04

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Carlos Trucios
(Carlos Trucios) should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.