IDEAS home Printed from https://ideas.repec.org/b/zbw/hsisch/303122.html
   My bibliography  Save this book

Künstliche Intelligenz und Arbeitsrecht

Author

Listed:
  • Waas, Bernd

Abstract

Anwendungen der Künstlichen Intelligenz (KI) begegnen uns bereits heute, wenn auch oft unbemerkt, im Privat- und im Arbeitsleben. Die KI-Forschung hat eine rasante Entwicklung genommen; viele Experten gehen davon aus, dass die grundlegenden Veränderungen noch bevorstehen. Was gestern noch fast undenkbar erschien, ist vielleicht schon morgen fester Bestandteil des Alltags.Auch in den Unternehmen setzt sich KI mehr und mehr durch. KI-Anwendungen bieten für die Beschäftigten viele Chancen, wenn man nur an Entlastung von körperlich beanspruchenden Tätigkeiten oder den Schutz der Gesundheit der Arbeitnehmer denkt. Zugleich ist die Entwicklung aber mit erheblichen Risiken und Herausforderungen verbunden. Mit diesen befasst sich die vorliegende Untersuchung und entwirft ausgehend davon arbeitsrechtliche Lösungsansätze und zeigt die aktuellen rechtspolitischen Entwicklungen auf. Die beiden Kernfragen des Buches lauten: Was bedeutet KI für den Schutz der Arbeitnehmer? Vor welchen Herausforderungen stehen Individualarbeitsrecht und Mitbestimmung?

Suggested Citation

  • Waas, Bernd, 2023. "Künstliche Intelligenz und Arbeitsrecht," HSI-Schriftenreihe, Hugo Sinzheimer Institute for Labour and Social Security Law (HSI), Hans Böckler Foundation, volume 46, number 303122.
  • Handle: RePEc:zbw:hsisch:303122
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/303122/1/hsi-schriftenreihe-bd46.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanhao Wei & Pinar Yildirim & Christophe Van den Bulte & Chrysanthos Dellarocas, 2016. "Credit Scoring with Social Network Data," Marketing Science, INFORMS, vol. 35(2), pages 234-258, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Sahabuddin & Junaina Muhammad & Mohamed Hisham Yahya & Sabarina Mohammed Shah & Md. Kausar Alam, 2019. "Digitalization, Innovation and Sustainable Development: An Evidence of Islamic Finance Perspective," International Journal of Asian Social Science, Asian Economic and Social Society, vol. 9(12), pages 651-656, December.
    2. Daniel Bjorkegren & Joshua E. Blumenstock & Samsun Knight, 2020. "Manipulation-Proof Machine Learning," Papers 2004.03865, arXiv.org.
    3. Shiqi Fang & Zexun Chen & Jake Ansell, 2024. "Peer-induced Fairness: A Causal Approach for Algorithmic Fairness Auditing," Papers 2408.02558, arXiv.org, revised Sep 2024.
    4. Sanjiv Das & Xin Huang & Soji Adeshina & Patrick Yang & Leonardo Bachega, 2023. "Credit Risk Modeling with Graph Machine Learning," INFORMS Joural on Data Science, INFORMS, vol. 2(2), pages 197-217, October.
    5. Jian Mou & J. Christopher Westland & Tuan Q. Phan & Tianhui Tan, 2020. "Microlending on mobile social credit platforms: an exploratory study using Philippine loan contracts," Electronic Commerce Research, Springer, vol. 20(1), pages 173-196, March.
    6. João Paulo Coelho Ribeiro & Fábio Duarte & Ana Paula Matias Gama, 2022. "Does microfinance foster the development of its clients? A bibliometric analysis and systematic literature review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-35, December.
    7. Pinar Yildirim & Yanhao Wei & Christophe Bulte & Joy Lu, 2020. "Social network design for inducing effort," Quantitative Marketing and Economics (QME), Springer, vol. 18(4), pages 381-417, December.
    8. David A. Schweidel & Yakov Bart & J. Jeffrey Inman & Andrew T. Stephen & Barak Libai & Michelle Andrews & Ana Babić Rosario & Inyoung Chae & Zoey Chen & Daniella Kupor & Chiara Longoni & Felipe Thomaz, 2022. "How consumer digital signals are reshaping the customer journey," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1257-1276, November.
    9. Bryan Bollinger & Song Yao, 2018. "Risk transfer versus cost reduction on two-sided microfinance platforms," Quantitative Marketing and Economics (QME), Springer, vol. 16(3), pages 251-287, September.
    10. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    11. Freedman, Seth & Jin, Ginger Zhe, 2017. "The information value of online social networks: Lessons from peer-to-peer lending," International Journal of Industrial Organization, Elsevier, vol. 51(C), pages 185-222.
    12. Nicolás de Roux, 2021. "Exogenous shocks, credit reports and access to credit: Evidence from colombian coffee producers," Documentos CEDE 19769, Universidad de los Andes, Facultad de Economía, CEDE.
    13. Sun, Yue & Chai, Nana & Dong, Yizhe & Shi, Baofeng, 2022. "Assessing and predicting small industrial enterprises’ credit ratings: A fuzzy decision-making approach," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1158-1172.
    14. DE CNUDDE, Sofie & MOEYERSOMS, Julie & STANKOVA, Marija & TOBBACK, Ellen & JAVALY, Vinayak & MARTENS, David, 2015. "Who cares about your Facebook friends? Credit scoring for microfinance," Working Papers 2015018, University of Antwerp, Faculty of Business and Economics.
    15. Fang, Fang & Chen, Yuanyuan, 2019. "A new approach for credit scoring by directly maximizing the Kolmogorov–Smirnov statistic," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 180-194.
    16. Luis Javier Sanchez-Barrios & Mario Giraldo & Mahmoud Khalik & Ricardo Manjarres, 2015. "Services for the underserved: unintended well-being," The Service Industries Journal, Taylor & Francis Journals, vol. 35(15-16), pages 883-897, November.
    17. Jong Wook Lee & So Young Sohn, 2021. "Evaluating borrowers’ default risk with a spatial probit model reflecting the distance in their relational network," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-11, December.
    18. Yi Liu & Pinar Yildirim & Z. John Zhang, 2021. "Social Media, Content Moderation, and Technology," Papers 2101.04618, arXiv.org, revised Jan 2021.
    19. Xianghua Lu & Tian Lu & Chong (Alex) Wang & Ruofan Wu, 2021. "Can Social Notifications Help to Mitigate Payment Delinquency in Online Peer‐to‐Peer Lending?," Production and Operations Management, Production and Operations Management Society, vol. 30(8), pages 2564-2585, August.
    20. Nicolás de Roux, 2020. "Weather Variability, Credit Scores and Access to Credit: Evidence from Colombian Coffee Farmers," Documentos CEDE 17800, Universidad de los Andes, Facultad de Economía, CEDE.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hsisch:303122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/boeckde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.