IDEAS home Printed from https://ideas.repec.org/b/zbw/bofism/sm2003_027.html
   My bibliography  Save this book

On robust ESACF identification of mixed ARIMA models

Author

Listed:
  • Hella, Heikki

Abstract

Tilastoaineistossa on usein joitakin havaintoja, jotka poikkeavat merkittävästi aineiston muusta osasta.Nämä poikkeavat havainnot (outlierit) aiheuttavat huomattavia ongelmia tilastollisessa analyysissä ja päättelyssä.Valitettavasti monet klassisen tilastotieteen menetelmät, kuten tavallinen pienimmän neliösumman menetelmä, ovat hyvin herkkiä näiden poikkeavien havaintojen vaikutuksille, eli ne eivät ole robusteja.Lineaarisille regressiomalleille ja viime aikoina myös aikasarjamalleille on kuitenkin kehitetty useita robusteja estimointi- ja diagnostiikkamenetelmiä.Aikasarjamallien robustia täsmentämistä koskeva kirjallisuus ei ole vielä kovin laajaa, mutta kasvaa nopeasti.Mallien täsmentäminen on hankala juttu robustissa aikasarjaanalyysissä (Martin ja Yohai 1986).Jos aikasarjan tiedetään tai oletetaan sisältävän poikkeavia havaintoja, mallintamisen ensi vaihe pitäisi suorittaa robustein täsmentämismenetelmin. Robustin version kehittäminen niin sanotusta laajennetusta autokorrelaatiofunktiomenetelmästä (EACF-proseduuri), jonka alun perin kehittivät Tsay ja Tiao (1984) yhden muuttujan ARIMAmallien alustavaksi täsmentämiseksi, ja robustin menetelmän tulosten vertailu perinteisen menetelmän antamiin tuloksiin. 2.Laajennetun autokorrelaatiofunktion kertoimien (eli ESACF -matriisin elementtien) otosjakaumien simulointi klassisin ja robustein menetelmin sekä puhtaiden että outliereillä saastuneiden aikasarjojen tapauksissa. 3.Laajennetun autokorrelaatiofunktion kertoimille simuloitujen keskivirheiden vertaaminen teoreettisiin estimaatteihinsa. Robustointi koskee kahta ESACF-proseduurin vaihetta: iteratiivista autoregressiota, AR(p), ja autokorrelaatiofunktiota, jota käytetään vähemmän harhaisten estimaattien tuottamiseksi.Simulointikokeiden lisäksi robusteja versioita ESACF-proseduurista sovelletaan työssä eräisiin synteettisiin ja aitoihin aikasarjoihin, joista muutamia on kirjallisuudessa käytetty havainnollisina esimerkkeinä. Simulointikokeet osoittavat, että koska robusti MM-estimaattori on tehokas myös outliereitä sisältämättömien aikasarjojen tapauksissa, tätä robustia ESACF-proseduuria voidaan aina soveltaa. Menetelmästä saatava tuki robustiin yksikköjuuritestaukseen on ilmeinen, mutta vaatii lisää tutkimusta. Avainsanat: robusti täsmentäminen, robusti laajennettu autokorrelaatiofunktio, outlieri, robusti regressioestimointi, Monte Carlo -simulointi, aikasarjamallit

Suggested Citation

  • Hella, Heikki, 2003. "On robust ESACF identification of mixed ARIMA models," Bank of Finland Scientific Monographs, Bank of Finland, volume 0, number sm2003_027, July.
  • Handle: RePEc:zbw:bofism:sm2003_027
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/212960/1/e27-bof-studies.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Efstathios Paparoditis & Bernd Streitberg, 1992. "Order Identification Statistics In Stationary Autoregressive Moving‐Average Models:Vector Autocorrelations And The Bootstrap," Journal of Time Series Analysis, Wiley Blackwell, vol. 13(5), pages 415-434, September.
    2. Tsay, Ruey S, 1993. "Testing for Noninvertible Models with Applications," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 225-233, April.
    3. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    4. Schwert, G William, 2002. "Tests for Unit Roots: A Monte Carlo Investigation," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 5-17, January.
    5. G. Masarotto, 1987. "Robust Identification of Autoregressive Moving Average Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(2), pages 214-220, June.
    6. Richard Gerlach & Chris Carter & Robert Kohn, 1999. "Diagnostics for Time Series Analysis," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(3), pages 309-330, May.
    7. Wai-Sum Chan, 1995. "Understanding the effect of time series outliers on sample autocorrelations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 4(1), pages 179-186, June.
    8. Jeffrey B. Birch & R. Douglas Martin, 1981. "Confidence Intervals For Robust Estimates Of The First Order Autoregressive Parameter," Journal of Time Series Analysis, Wiley Blackwell, vol. 2(4), pages 205-220, July.
    9. Bertrand Mareschal & Guy Melard, 1988. "Algorithm AS-237: The corner method for identifying autoregressive-moving average models," ULB Institutional Repository 2013/13704, ULB -- Universite Libre de Bruxelles.
    10. Lucas, André, 1995. "Unit Root Tests Based on M Estimators," Econometric Theory, Cambridge University Press, vol. 11(2), pages 331-346, February.
    11. Alain Berlinet & Christian Francq, 1997. "On Bartlett’s Formula for Non‐linear Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 18(6), pages 535-552, November.
    12. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, September.
    13. Melard, G. & Pasteels, J. -M., 2000. "Automatic ARIMA modeling including interventions, using time series expert software," International Journal of Forecasting, Elsevier, vol. 16(4), pages 497-508.
    14. Lucas, Andre, 1995. "An outlier robust unit root test with an application to the extended Nelson-Plosser data," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 153-173.
    15. Melard, Guy & Roy, Roch, 1987. "On confidence intervals and tests for autocorrelations," Computational Statistics & Data Analysis, Elsevier, vol. 5(1), pages 31-44.
    16. Hoek, Henk & Lucas, Andre & van Dijk, Herman K., 1995. "Classical and Bayesian aspects of robust unit root inference," Journal of Econometrics, Elsevier, vol. 69(1), pages 27-59, September.
    17. Zaman, Asad & Rousseeuw, Peter J. & Orhan, Mehmet, 2001. "Econometric applications of high-breakdown robust regression techniques," Economics Letters, Elsevier, vol. 71(1), pages 1-8, April.
    18. B. Mareschal & G. Mélard, 1988. "The Corner Method for Identifying Autoregressive Moving Average Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 37(2), pages 301-316, June.
    19. Guy Melard & Roch Roy, 1987. "On confidence intervals and tests for autocorrelations," ULB Institutional Repository 2013/13702, ULB -- Universite Libre de Bruxelles.
    20. Ali, Mukhtar M, 1984. "Distributions of the Sample Autocorrelations When Observations Are from a Stationary Autoregressive-Moving-Average Process," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(3), pages 271-278, July.
    21. Hector Allende & Siegfried Heiler, 1992. "Recursive Generalized M Estimates For Autoregressive Moving‐Average Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 13(1), pages 1-18, January.
    22. Meintanis, S. G. & Donatos, G. S., 1999. "Finite-sample performance of alternative estimators for autoregressive models in the presence of outliers," Computational Statistics & Data Analysis, Elsevier, vol. 31(3), pages 323-339, September.
    23. Regina Kaiser & Agustín Maravall, 1999. "Seasonal Outliers in Time Series," Working Papers 9915, Banco de España.
    24. Mills,Terence C., 1991. "Time Series Techniques for Economists," Cambridge Books, Cambridge University Press, number 9780521405744, September.
    25. Tsay, Ruey S, 1985. "Model Identification in Dynamic Regression (Distributed Lag) Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(3), pages 228-237, June.
    26. Jeong, Jinook & Chung, Seoung, 2001. "Bootstrap tests for autocorrelation," Computational Statistics & Data Analysis, Elsevier, vol. 38(1), pages 49-69, November.
    27. Bickel, David R., 2002. "Robust estimators of the mode and skewness of continuous data," Computational Statistics & Data Analysis, Elsevier, vol. 39(2), pages 153-163, April.
    28. D. Piccolo & G. Tunnicliffe Wilson, 1984. "A Unified Approach To Arma Model Identification And Preliminary Estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 5(3), pages 183-204, May.
    29. Chan, Wai-sum & Wei, William W. S., 1992. "A comparison of some estimators of time series autocorrelations," Computational Statistics & Data Analysis, Elsevier, vol. 14(2), pages 149-163, August.
    30. Maravall, Agustín, 1999. "Seasonal outliers in time series," DES - Working Papers. Statistics and Econometrics. WS 6333, Universidad Carlos III de Madrid. Departamento de Estadística.
    31. McCulloch, Robert E. & Tsay, Ruey S., 1994. "Bayesian Inference of Trend and Difference-Stationarity," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 596-608, August.
    32. Guy Melard & Jean-Michel Pasteels, 2000. "Automatic ARIMA modeling including interventions, using time series expert software," ULB Institutional Repository 2013/13744, ULB -- Universite Libre de Bruxelles.
    33. Marc G. Genton & André Lucas, 2003. "Comprehensive definitions of breakdown points for independent and dependent observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 81-94, February.
    34. Yanyuan Ma & Marc G. Genton, 2000. "Highly Robust Estimation of the Autocovariance Function," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(6), pages 663-684, November.
    35. You, Jiazhong, 1999. "A Monte Carlo comparison of several high breakdown and efficient estimators," Computational Statistics & Data Analysis, Elsevier, vol. 30(2), pages 205-219, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Carstensen, 2003. "The finite-sample performance of robust unit root tests," Statistical Papers, Springer, vol. 44(4), pages 469-482, October.
    2. Aparicio, Felipe M. & García, Ana, 2003. "Range unit root tests," DES - Working Papers. Statistics and Econometrics. WS ws031126, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Olivier Darné & Amélie Charles, 2012. "A note on the uncertain trend in US real GNP: Evidence from robust unit root tests," Economics Bulletin, AccessEcon, vol. 32(3), pages 2399-2406.
    4. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871, September.
    5. Carlos A. Medel, 2013. "How informative are in-sample information criteria to forecasting? The case of Chilean GDP," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 50(1), pages 133-161, May.
    6. Abadir, Karim M. & Lucas, Andre, 2000. "Quantiles for t-statistics based on M-estimators of unit roots," Economics Letters, Elsevier, vol. 67(2), pages 131-137, May.
    7. Luiz Lima & Jaime de Jesus Filho, 2008. "Further investigation of the uncertain trend in US GDP," Applied Economics, Taylor & Francis Journals, vol. 40(9), pages 1207-1216.
    8. Uwe Hassler & Paulo M.M. Rodrigues & Antonio Rubia, 2016. "Quantile Regression for Long Memory Testing: A Case of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(4), pages 693-724.
    9. Charles, Amélie & Darné, Olivier, 2012. "Trends and random walks in macroeconomic time series: A reappraisal," Journal of Macroeconomics, Elsevier, vol. 34(1), pages 167-180.
    10. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, September.
    11. Regina Kaiser & Agustín Maravall, 2000. "An Application of TRAMO-SEATS: Changes in Seasonality and Current Trend-Cycle Assessment: the German Retail Trade Turnover Series," Working Papers 0011, Banco de España.
    12. Guy Melard & Marianne Paesmans & Roch Roy, 1991. "Consistent estimation of the asymptotic covariance structure of multivariate serial correlation," ULB Institutional Repository 2013/13722, ULB -- Universite Libre de Bruxelles.
    13. Rickard Sandberg, 2015. "M-estimator based unit root tests in the ESTAR framework," Statistical Papers, Springer, vol. 56(4), pages 1115-1135, November.
    14. Čίžek, Pavel & Härdle, Wolfgang Karl, 2006. "Robust econometrics," SFB 649 Discussion Papers 2006-050, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    16. Franses, Philip Hans & Lucas, André, 1997. "Outlier robust cointegration analysis," Serie Research Memoranda 0045, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    17. Maravall, Agustín, 2000. "An application of tramo-seats: changes in seasonality and current trend-cycle assesment: the german retail trade turnover series," DES - Working Papers. Statistics and Econometrics. WS 10010, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Mamadou-Diéne Diop & Jules Sadefo Kamdem, 2023. "Multiscale Agricultural Commodities Forecasting Using Wavelet-SARIMA Process," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(1), pages 1-40, March.
    19. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    20. Singh, Sarbjit & Parmar, Kulwinder Singh & Kumar, Jatinder & Makkhan, Sidhu Jitendra Singh, 2020. "Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bofism:sm2003_027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/bofgvfi.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.