IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v34y2023i5p1619-1638.html
   My bibliography  Save this article

ICT, carbon emissions, climate change, and energy demand nexus: The potential benefit of digitalization in Taiwan

Author

Listed:
  • Rishan Adha
  • Cheng-Yih Hong
  • Somya Agrawal
  • Li-Hua Li

Abstract

The global rise in energy consumption makes managing energy demands a priority. Here, the potential of Information and Communication Technology (ICT) in controlling energy consumption is still debated. Within this context, the main objective of the current study is to measure the impact of ICT, its potential benefit, and environmental factors on household electricity demand in Taiwan. A panel of data from 20 cities in Taiwan was collected during the period 2004–2018. We adopted PMG estimation and applied the DH-causality test for analysis. The estimation results show that ICT, carbon emissions, and climate change will drive household electricity demand in Taiwan in the long term. However, ICT has a higher potential to reduce electricity demand in the short-term period. In addition, the results of the causality test reveal a two-way interrelationship between ICT and electricity demand. Our study also found that climate change indirectly affects the use of electricity through household appliances. We also presented several policy implications at the end of this paper.

Suggested Citation

  • Rishan Adha & Cheng-Yih Hong & Somya Agrawal & Li-Hua Li, 2023. "ICT, carbon emissions, climate change, and energy demand nexus: The potential benefit of digitalization in Taiwan," Energy & Environment, , vol. 34(5), pages 1619-1638, August.
  • Handle: RePEc:sae:engenv:v:34:y:2023:i:5:p:1619-1638
    DOI: 10.1177/0958305X221093458
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X221093458
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X221093458?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Blasch, Julia & Boogen, Nina & Filippini, Massimo & Kumar, Nilkanth, 2017. "Explaining electricity demand and the role of energy and investment literacy on end-use efficiency of Swiss households," Energy Economics, Elsevier, vol. 68(S1), pages 89-102.
    2. Osman, Mohamed & Gachino, Geoffrey & Hoque, Ariful, 2016. "Electricity consumption and economic growth in the GCC countries: Panel data analysis," Energy Policy, Elsevier, vol. 98(C), pages 318-327.
    3. Filippini, Massimo & Hunt, Lester C., 2012. "US residential energy demand and energy efficiency: A stochastic demand frontier approach," Energy Economics, Elsevier, vol. 34(5), pages 1484-1491.
    4. Pedroni, Peter, 2004. "Panel Cointegration: Asymptotic And Finite Sample Properties Of Pooled Time Series Tests With An Application To The Ppp Hypothesis," Econometric Theory, Cambridge University Press, vol. 20(3), pages 597-625, June.
    5. Anda, Martin & Temmen, Justin, 2014. "Smart metering for residential energy efficiency: The use of community based social marketing for behavioural change and smart grid introduction," Renewable Energy, Elsevier, vol. 67(C), pages 119-127.
    6. Massimo Filippini & Lester C. Hunt, 2011. "Energy Demand and Energy Efficiency in the OECD Countries: A Stochastic Demand Frontier Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 59-80.
    7. Dumitrescu, Elena-Ivona & Hurlin, Christophe, 2012. "Testing for Granger non-causality in heterogeneous panels," Economic Modelling, Elsevier, vol. 29(4), pages 1450-1460.
    8. Alina Zaharia & Maria Claudia Diaconeasa & Laura Brad & Georgiana-Raluca Lădaru & Corina Ioanăș, 2019. "Factors Influencing Energy Consumption in the Context of Sustainable Development," Sustainability, MDPI, vol. 11(15), pages 1-28, August.
    9. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    10. Joakim Westerlund, 2007. "Testing for Error Correction in Panel Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(6), pages 709-748, December.
    11. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "Energy consumption, pollutant emissions and economic growth in South Africa," Energy Economics, Elsevier, vol. 32(6), pages 1374-1382, November.
    12. Kao, Chihwa, 1999. "Spurious regression and residual-based tests for cointegration in panel data," Journal of Econometrics, Elsevier, vol. 90(1), pages 1-44, May.
    13. Luciano Lopez & Sylvain Weber, 2017. "Testing for Granger causality in panel data," Stata Journal, StataCorp LP, vol. 17(4), pages 972-984, December.
    14. Zheming Yan & Rui Shi & Zhiming Yang, 2018. "ICT Development and Sustainable Energy Consumption: A Perspective of Energy Productivity," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    15. Alsaleh, Mohd & Abdul-Rahim, A.S., 2022. "The pathway toward pollution mitigation in EU28 region: Does hydropower growth make a difference?," Renewable Energy, Elsevier, vol. 185(C), pages 291-301.
    16. Frees, Edward W., 1995. "Assessing cross-sectional correlation in panel data," Journal of Econometrics, Elsevier, vol. 69(2), pages 393-414, October.
    17. Peter Pedroni, 1999. "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 653-670, November.
    18. Lei Jin & Keran Duan & Xu Tang, 2018. "What Is the Relationship between Technological Innovation and Energy Consumption? Empirical Analysis Based on Provincial Panel Data from China," Sustainability, MDPI, vol. 10(1), pages 1-13, January.
    19. Flavio Guerhardt & Thadeu Alfredo Farias Silva & Felix Martin Carbajal Gamarra & Silvestre Eduardo Rocha Ribeiro Júnior & Segundo Alberto Vásquez Llanos & Ada Patricia Barturén Quispe & Milton Vieira , 2020. "A Smart Grid System for Reducing Energy Consumption and Energy Cost in Buildings in São Paulo, Brazil," Energies, MDPI, vol. 13(15), pages 1-22, July.
    20. Pesaran, M. Hashem & Vanessa Smith, L. & Yamagata, Takashi, 2013. "Panel unit root tests in the presence of a multifactor error structure," Journal of Econometrics, Elsevier, vol. 175(2), pages 94-115.
    21. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    22. Yuo-Hsien Shiau & Su-Fen Yang & Rishan Adha & Syamsiyatul Muzayyanah, 2022. "Modeling Industrial Energy Demand in Relation to Subsector Manufacturing Output and Climate Change: Artificial Neural Network Insights," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    23. Hofman, André & Aravena, Claudio & Aliaga, Vianka, 2016. "Information and communication technologies and their impact in the economic growth of Latin America, 1990–2013," Telecommunications Policy, Elsevier, vol. 40(5), pages 485-501.
    24. Yu-Chen Yang & Cheng-Yih Hong & Syamsiyatul Muzayyanah & Rishan Adha, 2020. "Decomposition of Growth Factors in High-tech Industries and CO2 Emissions: After the World Financial Crisis in 2008," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 500-506.
    25. Kieren Mayers & Jonathan Koomey & Rebecca Hall & Maria Bauer & Chris France & Amanda Webb, 2015. "The Carbon Footprint of Games Distribution," Journal of Industrial Ecology, Yale University, vol. 19(3), pages 402-415, June.
    26. Wolde-Rufael, Yemane & Menyah, Kojo, 2010. "Nuclear energy consumption and economic growth in nine developed countries," Energy Economics, Elsevier, vol. 32(3), pages 550-556, May.
    27. Jens Malmodin & Dag Lundén, 2018. "The Energy and Carbon Footprint of the Global ICT and E&M Sectors 2010–2015," Sustainability, MDPI, vol. 10(9), pages 1-31, August.
    28. Wen-Cheng Lu, 2018. "The impacts of information and communication technology, energy consumption, financial development, and economic growth on carbon dioxide emissions in 12 Asian countries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(8), pages 1351-1365, December.
    29. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    30. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    31. repec:bla:obuest:v:61:y:1999:i:0:p:653-70 is not listed on IDEAS
    32. Jung Wan Lee & Tantatape Brahmasrene, 2014. "ICT, CO 2 Emissions and Economic Growth: Evidence from a Panel of ASEAN," Global Economic Review, Taylor & Francis Journals, vol. 43(2), pages 93-109, June.
    33. Rishan Adha & Cheng-Yih Hong, 2021. "How Large the Direct Rebound Effect for Residential Electricity Consumption When the Artificial Neural Network Takes on the Role? A Taiwan Case Study of Household Electricity Consumption," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 354-364.
    34. Sadorsky, Perry, 2012. "Information communication technology and electricity consumption in emerging economies," Energy Policy, Elsevier, vol. 48(C), pages 130-136.
    35. Angeliki N. Menegaki, 2019. "The ARDL Method in the Energy-Growth Nexus Field; Best Implementation Strategies," Economies, MDPI, vol. 7(4), pages 1-16, October.
    36. Rafael E. De Hoyos & Vasilis Sarafidis, 2006. "Testing for cross-sectional dependence in panel-data models," Stata Journal, StataCorp LP, vol. 6(4), pages 482-496, December.
    37. Fırat Emir & Festus Victor Bekun, 2019. "Energy intensity, carbon emissions, renewable energy, and economic growth nexus: New insights from Romania," Energy & Environment, , vol. 30(3), pages 427-443, May.
    38. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    39. Adha, Rishan & Hong, Cheng-Yih & Firmansyah, M. & Paranata, Ade, 2021. "Rebound effect with energy efficiency determinants: a two-stage analysis of residential electricity consumption in Indonesia," MPRA Paper 110444, University Library of Munich, Germany.
    40. Anders S. G. Andrae & Tomas Edler, 2015. "On Global Electricity Usage of Communication Technology: Trends to 2030," Challenges, MDPI, vol. 6(1), pages 1-41, April.
    41. Patrick Schulte & Heinz Welsch & Sascha Rexhäuser, 2016. "ICT and the Demand for Energy: Evidence from OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(1), pages 119-146, January.
    42. Zhang, Chuanguo & Liu, Cong, 2015. "The impact of ICT industry on CO2 emissions: A regional analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 12-19.
    43. Kais Saidi & Sami Hammami, 2015. "The Effect of Energy Consumption and Economic Growth on Co2 Emissions:Evidence from 58 Countries," Bulletin of Energy Economics (BEE), The Economics and Social Development Organization (TESDO), vol. 3(3), pages 91-104, September.
    44. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    45. Haftu, Girmay Giday, 2019. "Information communications technology and economic growth in Sub-Saharan Africa: A panel data approach," Telecommunications Policy, Elsevier, vol. 43(1), pages 88-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Yan & Ridwan Lanre Ibrahim & Mamdouh Abdulaziz Saleh Al-Faryan & David Mautin Oke, 2023. "Embracing Eco-Digitalization and Green Finance Policies for Sustainable Environment: Do the Engagements of Multinational Corporations Make or Mar the Target for Selected MENA Countries?," Sustainability, MDPI, vol. 15(15), pages 1-18, August.
    2. Elisa Di Febo & Eliana Angelini & Tu Le, 2024. "Environment and Digitalization: The New Paradigms in the European Stock Markets," Economies, MDPI, vol. 12(3), pages 1-15, March.
    3. Melike E. Bildirici & Rui Alexandre Castanho & Fazıl Kayıkçı & Sema Yılmaz Genç, 2022. "ICT, Energy Intensity, and CO 2 Emission Nexus," Energies, MDPI, vol. 15(13), pages 1-15, June.
    4. Škare, Marinko & Gavurova, Beata & Porada-Rochon, Malgorzata, 2024. "Digitalization and carbon footprint: Building a path to a sustainable economic growth," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    5. Lin, Boqiang & Huang, Chenchen, 2023. "Nonlinear relationship between digitization and energy efficiency: Evidence from transnational panel data," Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Azam & Zia Ur Rehman & Yusnidah Ibrahim, 2022. "Causal nexus in industrialization, urbanization, trade openness, and carbon emissions: empirical evidence from OPEC economies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13990-14010, December.
    2. Ibrahim D. Raheem & Aviral K. Tiwari & Daniel Balsalobre-lorente, 2019. "The Role of ICT and Financial Development on CO2 Emissions and Economic Growth," Working Papers of the African Governance and Development Institute. 19/058, African Governance and Development Institute..
    3. Acikgoz, Senay & Ben Ali, Mohamed Sami, 2019. "Where does economic growth in the Middle Eastern and North African countries come from?," The Quarterly Review of Economics and Finance, Elsevier, vol. 73(C), pages 172-183.
    4. Škare, Marinko & Porada-Rochoń, Małgorzata, 2023. "Are we making progress on decarbonization? A panel heterogeneous study of the long-run relationship in selected economies," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    5. Zeeshan Arshad & Margarita Robaina & Anabela Botelho, 2020. "Renewable and Non-renewable Energy, Economic Growth and Natural Resources Impact on Environmental Quality: Empirical Evidence from South and Southeast Asian Countries with CS-ARDL Modeling," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 368-383.
    6. Wen-Cheng Lu, 2018. "The impacts of information and communication technology, energy consumption, financial development, and economic growth on carbon dioxide emissions in 12 Asian countries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(8), pages 1351-1365, December.
    7. Dierk Herzer, 2016. "Unions and Income Inequality: A Heterogeneous Panel Co-integration and Causality Analysis," LABOUR, CEIS, vol. 30(3), pages 318-346, September.
    8. Sun, Xianming & Xiao, Shiyi & Ren, Xiaohang & Xu, Bing, 2023. "Time-varying impact of information and communication technology on carbon emissions," Energy Economics, Elsevier, vol. 118(C).
    9. Abdilahi Ali & Baris Alpaslan, 2017. "Is There an Investment Motive Behind Remittances? Evidence From Panel Cointegration," Journal of Developing Areas, Tennessee State University, College of Business, vol. 51(1), pages 63-82, January-M.
    10. Eberhardt, Markus & Teal, Francis, 2008. "Modeling technology and technological change in manufacturing: how do countries differ?," MPRA Paper 10690, University Library of Munich, Germany.
    11. Yağmur Sağlam & Hüseyin Avni Egeli, 2018. "A Comparison of Domestic Demand and Export-led Growth Strategies for European Transition Economies," Foreign Trade Review, , vol. 53(3), pages 156-173, August.
    12. Markus Eberhardt, 2011. "Panel time-series modeling: New tools for analyzing xt data," United Kingdom Stata Users' Group Meetings 2011 22, Stata Users Group.
    13. Jeetendra Khadan & Amrita Deonarine, 2020. "Sustainability of current account balances in small states," Economics and Business Letters, Oviedo University Press, vol. 9(1), pages 14-20.
    14. Abdelaziz Boukhelkhal, 2022. "Energy use, economic growth and CO2 emissions in Africa: does the environmental Kuznets curve hypothesis exist? New evidence from heterogeneous panel under cross-sectional dependence," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13083-13110, November.
    15. Chakraborty, Saptorshee Kanto & Mazzanti, Massimiliano, 2020. "Energy intensity and green energy innovation: Checking heterogeneous country effects in the OECD," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 328-343.
    16. Fang, Zheng & Chang, Youngho, 2016. "Energy, human capital and economic growth in Asia Pacific countries — Evidence from a panel cointegration and causality analysis," Energy Economics, Elsevier, vol. 56(C), pages 177-184.
    17. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    18. Chien, Fengsheng & Anwar, Ahsan & Hsu, Ching-Chi & Sharif, Arshian & Razzaq, Asif & Sinha, Avik, 2021. "The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries," Technology in Society, Elsevier, vol. 65(C).
    19. Chakraborty, Saptorshee Kanto & Mazzanti, Massimiliano, 2021. "Renewable electricity and economic growth relationship in the long run: Panel data econometric evidence from the OECD," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 330-341.
    20. Abdilahi Ali & Baris Alpaslan, 2013. "Do Migrant Remittances Complement Domestic Investment? New Evidence from Panel Cointegration," Economics Discussion Paper Series 1308, Economics, The University of Manchester.

    More about this item

    Keywords

    Energy demand; ICT; carbon emissions; climate change; dynamic panel data model;
    All these keywords.

    JEL classification:

    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:34:y:2023:i:5:p:1619-1638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.