IDEAS home Printed from https://ideas.repec.org/a/zbw/espost/215496.html
   My bibliography  Save this article

Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market

Author

Listed:
  • López, Andrea Ruíz
  • Krumm, Alexandra
  • Schattenhofer, Lukas
  • Burandt, Thorsten
  • Montoya, Felipe Corral
  • Oberländer, Nora
  • Oei, Pao-Yu

Abstract

Colombia faces several challenges to secure a reliable, affordable, and climate-friendly energy supply. Persistently low reserve-to-production ratios in oil and gas, together with advancing climate change, are putting the country’s energy system at risk. Heavily relying on hydro-power, Colombia’s electricity system will become more vulnerable with extreme weather patterns such as El Niño. This paper offers a multi-method study of the role of photovoltaic (PV), specially prosumage systems, to support a slowly starting energy transition in Colombia. First, qualitative data from an expert elicitation in Colombia’s energy sector is analysed. Second, a model to calculate the internal rate of revenue for households is used to identify optimal sizes for household PV or prosumage systems under the new regulatory framework. Key concerns emerging from the expert elicitation include lacking substantial financial aid, insufficient tax incentives, and high equipment prices, which raise investment and operation costs. Also, model results confirm net-metering implementation as an enabler of widespread deployment of household PV systems. Most profitable system configurations include PV systems without storage technology. Our findings show that financial instruments are still insufficient to scale-up household level PV deployment.

Suggested Citation

  • López, Andrea Ruíz & Krumm, Alexandra & Schattenhofer, Lukas & Burandt, Thorsten & Montoya, Felipe Corral & Oberländer, Nora & Oei, Pao-Yu, 2020. "Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 148, pages 1266-1279.
  • Handle: RePEc:zbw:espost:215496
    DOI: 10.1016/j.renene.2019.10.066
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/215496/1/Ruiz%20Lopez_%202020_Sol%20PV%20Generation%20VV.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.renene.2019.10.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jorge Toro & Aarón Garavito & David Camilo López & Enrique Montes, 2015. "El choque petrolero y sus implicaciones en la economía colombiana," Borradores de Economia 13829, Banco de la Republica.
    2. Wolf-Peter Schill, Alexander Zerrahn, and Friedrich Kunz, 2017. "Prosumage of solar electricity: pros, cons, and the system perspective," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    3. Marchese, Carla & Venturini, Andrea, 2017. "Is there any Induced Demand for Tax Evasion?," IEL Working Papers 22, Institute of Public Policy and Public Choice - POLIS.
    4. Edsand, Hans-Erik, 2017. "Identifying barriers to wind energy diffusion in Colombia: A function analysis of the technological innovation system and the wider context," Technology in Society, Elsevier, vol. 49(C), pages 1-15.
    5. Monica Castaneda & Sebastian Zapata & Andres Aristizabal, 2018. "Assessing the Effect of Incentive Policies on Residential PV Investments in Colombia," Energies, MDPI, vol. 11(10), pages 1-17, October.
    6. Azi Ben-Rephael & Bruce I. Carlin & Zhi Da & Ryan D. Israelsen, 2017. "Demand for Information and Asset Pricing," NBER Working Papers 23274, National Bureau of Economic Research, Inc.
    7. Rubio, M. del Mar & Tafunell, Xavier, 2014. "Latin American hydropower: A century of uneven evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 323-334.
    8. Mastropietro, Paolo & Batlle, Carlos & Barroso, Luiz A. & Rodilla, Pablo, 2014. "Electricity auctions in South America: Towards convergence of system adequacy and RES-E support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 375-385.
    9. ., 2017. "A model of Transferred Demand," Chapters, in: An Autecological Theory of the Firm and its Environment, chapter 5, Edward Elgar Publishing.
    10. Michelle T. H. van Vliet & David Wiberg & Sylvain Leduc & Keywan Riahi, 2016. "Power-generation system vulnerability and adaptation to changes in climate and water resources," Nature Climate Change, Nature, vol. 6(4), pages 375-380, April.
    11. ., 2017. "The derived demand for knowledge," Chapters, in: Endogenous Innovation, chapter 6, pages 89-94, Edward Elgar Publishing.
    12. Le, Thai-Ha & Chang, Youngho & Park, Donghyun, 2017. "Energy demand convergence in APEC: An empirical analysis," Energy Economics, Elsevier, vol. 65(C), pages 32-41.
    13. Kitzing, Lena & Mitchell, Catherine & Morthorst, Poul Erik, 2012. "Renewable energy policies in Europe: Converging or diverging?," Energy Policy, Elsevier, vol. 51(C), pages 192-201.
    14. Baylis, Richard M. & Burnap, Peter & Clatworthy, Mark A. & Gad, Mahmoud A. & Pong, Christopher K.M., 2017. "Private lenders’ demand for audit," Journal of Accounting and Economics, Elsevier, vol. 64(1), pages 78-97.
    15. Szabó, S. & Bódis, K. & Huld, T. & Moner-Girona, M., 2013. "Sustainable energy planning: Leapfrogging the energy poverty gap in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 500-509.
    16. Rubio, M.d.Mar & Folchi, Mauricio, 2012. "Will small energy consumers be faster in transition? Evidence from the early shift from coal to oil in Latin America," Energy Policy, Elsevier, vol. 50(C), pages 50-61.
    17. Nils May & Ingmar Jürgens & Karsten Neuhoff, 2017. "Renewable Energy Policy: Risk Hedging Is Taking Center Stage," DIW Economic Bulletin, DIW Berlin, German Institute for Economic Research, vol. 7(39/40), pages 389-396.
    18. Creutzig, Felix & Goldschmidt, Jan Christoph & Lehmann, Paul & Schmid, Eva & von Blücher, Felix & Breyer, Christian & Fernandez, Blanca & Jakob, Michael & Knopf, Brigitte & Lohrey, Steffen & Susca, Ti, 2014. "Catching two European birds with one renewable stone: Mitigating climate change and Eurozone crisis by an energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1015-1028.
    19. Jimenez, Maritza & Franco, Carlos J. & Dyner, Isaac, 2016. "Diffusion of renewable energy technologies: The need for policy in Colombia," Energy, Elsevier, vol. 111(C), pages 818-829.
    20. Platteau, Jean-Philippe & De Bock, Ombeline & Gelade, Wouter, 2017. "The Demand for Microinsurance: A Literature Review," World Development, Elsevier, vol. 94(C), pages 139-156.
    21. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    22. Viviana, Martínez & Castillo, O.L., 2019. "Colombian energy planning - Neither for energy, nor for Colombia," Energy Policy, Elsevier, vol. 129(C), pages 1132-1142.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chul-Yong Lee & Jaekyun Ahn, 2020. "Stochastic Modeling of the Levelized Cost of Electricity for Solar PV," Energies, MDPI, vol. 13(11), pages 1-18, June.
    2. Carlos Cacciuttolo & Valentina Guzmán & Patricio Catriñir, 2024. "Renewable Solar Energy Facilities in South America—The Road to a Low-Carbon Sustainable Energy Matrix: A Systematic Review," Energies, MDPI, vol. 17(22), pages 1-50, November.
    3. Ramón Fernando Colmenares-Quintero & Gina Maestre-Gongora & Marieth Baquero-Almazo & Kim E. Stansfield & Juan Carlos Colmenares-Quintero, 2022. "Data Analysis of Electricity Service in Colombia’s Non-Interconnected Zones through Different Clustering Techniques," Energies, MDPI, vol. 15(20), pages 1-16, October.
    4. Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Diego Armando Giral-Ramírez, 2022. "Optimal Placement and Sizing of PV Sources in Distribution Grids Using a Modified Gradient-Based Metaheuristic Optimizer," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    5. Brandon Cortés-Caicedo & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Miguel Angel Rodriguez-Cabal & Javier Alveiro Rosero, 2022. "Energy Management System for the Optimal Operation of PV Generators in Distribution Systems Using the Antlion Optimizer: A Colombian Urban and Rural Case Study," Sustainability, MDPI, vol. 14(23), pages 1-35, December.
    6. Zapata, Sebastian & Castaneda, Monica & Herrera, Milton M. & Dyner, Isaac, 2023. "Investigating the concurrence of transmission grid expansion and the dissemination of renewables," Energy, Elsevier, vol. 276(C).
    7. Montoya-Duque, Laura & Arango-Aramburo, Santiago & Arias-Gaviria, Jessica, 2022. "Simulating the effect of the Pay-as-you-go scheme for solar energy diffusion in Colombian off-grid regions," Energy, Elsevier, vol. 244(PB).
    8. Luis Fernando Grisales-Noreña & Brandon Cortés-Caicedo & Gerardo Alcalá & Oscar Danilo Montoya, 2023. "Applying the Crow Search Algorithm for the Optimal Integration of PV Generation Units in DC Networks," Mathematics, MDPI, vol. 11(2), pages 1-18, January.
    9. Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Brandon Cortés-Caicedo & Farhad Zishan & Javier Rosero-García, 2023. "Optimal Power Dispatch of PV Generators in AC Distribution Networks by Considering Solar, Environmental, and Power Demand Conditions from Colombia," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
    10. Brandon Cortés-Caicedo & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Miguel-Angel Perea-Moreno & Alberto-Jesus Perea-Moreno, 2022. "Optimal Location and Sizing of PV Generation Units in Electrical Networks to Reduce the Total Annual Operating Costs: An Application of the Crow Search Algorithm," Mathematics, MDPI, vol. 10(20), pages 1-22, October.
    11. Luis Fernando Grisales-Noreña & Andrés Alfonso Rosales-Muñoz & Brandon Cortés-Caicedo & Oscar Danilo Montoya & Fabio Andrade, 2022. "Optimal Operation of PV Sources in DC Grids for Improving Technical, Economical, and Environmental Conditions by Using Vortex Search Algorithm and a Matrix Hourly Power Flow," Mathematics, MDPI, vol. 11(1), pages 1-28, December.
    12. Juan D. Saldarriaga-Loaiza & Sergio D. Saldarriaga-Zuluaga & Jesús M. López-Lezama & Fernando Villada-Duque & Nicolás Muñoz-Galeano, 2022. "Optimal Structuring of Investments in Electricity Generation Projects in Colombia with Non-Conventional Energy Sources," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    13. Alejandro Betancur-Ramos & John Grimaldo-Guerrero & John William Grimaldo-Guerrero & Juan Rivera-Alvarado & Eilin G mez-Mesino, 2022. "Users, Vehicles Electrics, and Energy Markets in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 11-17, September.
    14. Henao, Felipe & Dyner, Isaac, 2020. "Renewables in the optimal expansion of colombian power considering the Hidroituango crisis," Renewable Energy, Elsevier, vol. 158(C), pages 612-627.
    15. Kerstin Mohr, 2021. "Breaking the Dichotomies: Climate, Coal, and Gender. Paving the Way to a Just Transition. The Example of Colombia," Energies, MDPI, vol. 14(17), pages 1-18, September.
    16. William Niebles-Nunez & Leonardo Niebles-Nunez & Lorena Hoyos Babilonia, 2022. "Energy Financing in Colombia: A Bibliometric Review," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 459-466, March.
    17. de Doile, Gabriel Nasser Doyle & Rotella Junior, Paulo & Rocha, Luiz Célio Souza & Janda, Karel & Aquila, Giancarlo & Peruchi, Rogério Santana & Balestrassi, Pedro Paulo, 2022. "Feasibility of hybrid wind and photovoltaic distributed generation and battery energy storage systems under techno-economic regulation," Renewable Energy, Elsevier, vol. 195(C), pages 1310-1323.
    18. Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Alberto-Jesus Perea-Moreno, 2021. "Optimal Investments in PV Sources for Grid-Connected Distribution Networks: An Application of the Discrete–Continuous Genetic Algorithm," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    19. Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Diego Armando Giral-Ramírez, 2023. "Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology," Energies, MDPI, vol. 16(2), pages 1-20, January.
    20. Qudrat-Ullah, Hassan & Kayal, Aymen & Mugumya, Andrew, 2021. "Cost-effective energy billing mechanisms for small and medium-scale industrial customers in Uganda," Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. López, Andrea Ruíz & Krumm, Alexandra & Schattenhofer, Lukas & Burandt, Thorsten & Montoya, Felipe Corral & Oberländer, Nora & Oei, Pao-Yu, 2020. "Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market," Renewable Energy, Elsevier, vol. 148(C), pages 1266-1279.
    2. Zsuzsanna Csereklyei & M. d. Mar Rubio-Varas & David I. Stern, 2016. "Energy and Economic Growth: The Stylized Facts," The Energy Journal, , vol. 37(2), pages 223-256, April.
    3. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.
    4. Gawel, Erik & Strunz, Sebastian & Lehmann, Paul, 2014. "Wie viel Europa braucht die Energiewende?," UFZ Discussion Papers 4/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    5. Kueppers, Martin & Paredes Pineda, Stephany Nicole & Metzger, Michael & Huber, Matthias & Paulus, Simon & Heger, Hans Joerg & Niessen, Stefan, 2021. "Decarbonization pathways of worldwide energy systems – Definition and modeling of archetypes," Applied Energy, Elsevier, vol. 285(C).
    6. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2019. "Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization," Applied Energy, Elsevier, vol. 233, pages 584-598.
    7. Kendziorski, Mario & Göke, Leonard & von Hirschhausen, Christian & Kemfert, Claudia & Zozmann, Elmar, 2022. "Centralized and decentral approaches to succeed the 100% energiewende in Germany in the European context – A model-based analysis of generation, network, and storage investments," Energy Policy, Elsevier, vol. 167(C).
    8. Thomaßen, Georg & Redl, Christian & Bruckner, Thomas, 2022. "Will the energy-only market collapse? On market dynamics in low-carbon electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    9. Berk, Istemi & Kasman, Adnan & Kılınç, Dilara, 2020. "Towards a common renewable future: The System-GMM approach to assess the convergence in renewable energy consumption of EU countries," Energy Economics, Elsevier, vol. 87(C).
    10. Sofia Teives Henriques & Paul Sharp, 2021. "Without coal in the age of steam and dams in the age of electricity: an explanation for the failure of Portugal to industrialize before the Second World War," European Review of Economic History, European Historical Economics Society, vol. 25(1), pages 85-105.
    11. Syahrul Nizam Md Saad & Adriaan Hendrik van der Weijde, 2019. "Evaluating the Potential of Hosting Capacity Enhancement Using Integrated Grid Planning modeling Methods," Energies, MDPI, vol. 12(19), pages 1-23, September.
    12. Benjamin Leiva & Mar Rubio-Varas, 2020. "The Energy and Gross Domestic Product Causality Nexus in Latin America 1900-2010," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 423-435.
    13. Bertheau, Paul, 2020. "Supplying not electrified islands with 100% renewable energy based micro grids: A geospatial and techno-economic analysis for the Philippines," Energy, Elsevier, vol. 202(C).
    14. Sebastian Strunz, Erik Gawel, and Paul Lehmann, 2015. "Towards a general Europeanization of EU Member States energy policies?," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    15. Salman, Muhammad & Zha, Donglan & Wang, Guimei, 2022. "Assessment of energy poverty convergence: A global analysis," Energy, Elsevier, vol. 255(C).
    16. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.
    17. McRae, Shaun D. & Wolak, Frank A., 2021. "Retail pricing in Colombia to support the efficient deployment of distributed generation and electric stoves," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    18. Đukan, Mak & Kitzing, Lena, 2023. "A bigger bang for the buck: The impact of risk reduction on renewable energy support payments in Europe," Energy Policy, Elsevier, vol. 173(C).
    19. Castaneda, Monica & Zapata, Sebastian & Cherni, Judith & Aristizabal, Andres J. & Dyner, Isaac, 2020. "The long-term effects of cautious feed-in tariff reductions on photovoltaic generation in the UK residential sector," Renewable Energy, Elsevier, vol. 155(C), pages 1432-1443.
    20. Aniello, Gianmarco & Bertsch, Valentin, 2023. "Shaping the energy transition in the residential sector: Regulatory incentives for aligning household and system perspectives," Applied Energy, Elsevier, vol. 333(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:espost:215496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.