IDEAS home Printed from https://ideas.repec.org/a/zbw/espost/182102.html
   My bibliography  Save this article

The Costs of Simplicity: Why Multilevel Models May Benefit from Accounting for Cross-Cluster Differences in the Effects of Controls

Author

Listed:
  • Heisig, Jan Paul
  • Schaeffer, Merlin
  • Giesecke, Johannes

Abstract

Context effects, where a characteristic of an upper-level unit or cluster (e.g., a country) affects outcomes and relationships at a lower level (e.g., that of the individual), are a primary object of sociological inquiry. In recent years, sociologists have increasingly analyzed such effects using quantitative multilevel modeling. Our review of multilevel studies in leading sociology journals shows that most assume the effects of lower-level control variables to be invariant across clusters, an assumption that is often implausible. Comparing mixed-effects (random-intercept and slope) models, cluster-robust pooled OLS, and two-step approaches, we find that erroneously assuming invariant coefficients reduces the precision of estimated context effects. Semi-formal reasoning and Monte Carlo simulations indicate that loss of precision is largest when there is pronounced cross-cluster heterogeneity in the magnitude of coefficients, when there are marked compositional differences among clusters, and when the number of clusters is small. Although these findings suggest that practitioners should fit more flexible models, illustrative analyses of European Social Survey data indicate that maximally flexible mixed-effects models do not perform well in real-life settings. We discuss the need to balance parsimony and flexibility, and we demonstrate the encouraging performance of one prominent approach for reducing model complexity.

Suggested Citation

  • Heisig, Jan Paul & Schaeffer, Merlin & Giesecke, Johannes, 2017. "The Costs of Simplicity: Why Multilevel Models May Benefit from Accounting for Cross-Cluster Differences in the Effects of Controls," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 82(4), pages 796-827.
  • Handle: RePEc:zbw:espost:182102
    DOI: 10.1177/0003122417717901
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/182102/1/f-20885-full-text-Heisig-et_al-Costs-v3.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0003122417717901?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guido W. Imbens & Michal Kolesár, 2016. "Robust Standard Errors in Small Samples: Some Practical Advice," The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 701-712, October.
    2. Lewis, Jeffrey B. & Linzer, Drew A., 2005. "Estimating Regression Models in Which the Dependent Variable Is Based on Estimates," Political Analysis, Cambridge University Press, vol. 13(4), pages 345-364.
    3. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    4. repec:clg:wpaper:2013-17 is not listed on IDEAS
    5. Jeffrey M. Wooldridge, 2003. "Cluster-Sample Methods in Applied Econometrics," American Economic Review, American Economic Association, vol. 93(2), pages 133-138, May.
    6. James G. MacKinnon & Matthew D. Webb, 2017. "Wild Bootstrap Inference for Wildly Different Cluster Sizes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 233-254, March.
    7. William Rogers, 1993. "Quantile regression standard errors," Stata Technical Bulletin, StataCorp LP, vol. 2(9).
    8. Katja Möhring & Alexander Schmidt, 2012. "Multilevel tools," German Stata Users' Group Meetings 2012 06, Stata Users Group.
    9. James G. Mackinnon & Matthew D. Webb, 2017. "Wild Bootstrap Inference for Wildly Different Cluster Sizes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 233-254, March.
    10. Joe, Harry, 2006. "Generating random correlation matrices based on partial correlations," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2177-2189, November.
    11. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    12. Elff, Martin & Heisig, Jan Paul & Schaeffer, Merlin & Shikano, Susumu, 2016. "No Need to Turn Bayesian in Multilevel Analysis with Few Clusters: How Frequentist Methods Provide Unbiased Estimates and Accurate Inference," SocArXiv z65s4, Center for Open Science.
    13. Moulton, Brent R., 1986. "Random group effects and the precision of regression estimates," Journal of Econometrics, Elsevier, vol. 32(3), pages 385-397, August.
    14. Kloek, T, 1981. "OLS Estimation in a Model Where a Microvariable Is Explained by Aggregates and Contemporaneous Disturbances Are Equicorrelated," Econometrica, Econometric Society, vol. 49(1), pages 205-207, January.
    15. Daniel Stegmueller, 2013. "How Many Countries for Multilevel Modeling? A Comparison of Frequentist and Bayesian Approaches," American Journal of Political Science, John Wiley & Sons, vol. 57(3), pages 748-761, July.
    16. Rick L. Williams, 2000. "A Note on Robust Variance Estimation for Cluster-Correlated Data," Biometrics, The International Biometric Society, vol. 56(2), pages 645-646, June.
    17. Moulton, Brent R, 1990. "An Illustration of a Pitfall in Estimating the Effects of Aggregate Variables on Micro Unit," The Review of Economics and Statistics, MIT Press, vol. 72(2), pages 334-338, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    2. Aleksey Oshchepkov & Anna Shirokanova, 2020. "Multilevel Modeling For Economists: Why, When And How," HSE Working papers WP BRP 233/EC/2020, National Research University Higher School of Economics.
    3. A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
    4. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    5. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2011. "Robust Inference With Multiway Clustering," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 238-249, April.
    6. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    7. Rok Spruk, 2019. "The rise and fall of Argentina," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 28(1), pages 1-40, December.
    8. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 318, University of California, Davis, Department of Economics.
    9. James G. MacKinnon & Matthew D. Webb, 2020. "When and How to Deal with Clustered Errors in Regression Models," Working Paper 1421, Economics Department, Queen's University.
    10. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 106, University of California, Davis, Department of Economics.
    11. Matthew D. Webb, 2023. "Reworking wild bootstrap‐based inference for clustered errors," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 56(3), pages 839-858, August.
    12. Rok Spruk & Mitja Kovac, 2018. "Inefficient Growth," Review of Economics and Institutions, Università di Perugia, vol. 9(2).
    13. Klishchuk Bogdan & Zelenyuk Valentin, 2012. "Impact of Services LIberalization on Firm Level Productivity in Eastern Europe and Central Asia," EERC Working Paper Series 12/03e, EERC Research Network, Russia and CIS.
    14. James G. MacKinnon & Matthew D. Webb, 2017. "Wild Bootstrap Inference for Wildly Different Cluster Sizes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 233-254, March.
    15. Mitja Kovac & Salvini Datta & Rok Spruk, 2021. "Pharmaceutical Product Liability, Litigation Regimes, and the Propensity to Patent: An Empirical Firm-Level Investigation," SAGE Open, , vol. 11(2), pages 21582440211, April.
    16. Martin Halla & Friedrich Schneider & Alexander Wagner, 2013. "Satisfaction with democracy and collective action problems: the case of the environment," Public Choice, Springer, vol. 155(1), pages 109-137, April.
    17. Hübler, Olaf, 2014. "Estimation of standard errors and treatment effects in empirical economics : methods and applications," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 47(1-2), pages 43-62.
    18. Bruno Ferman & Cristine Pinto, 2019. "Inference in Differences-in-Differences with Few Treated Groups and Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 452-467, July.
    19. Thomas K. Bauer & Tanja Kasten & Lars-H. R. Siemers, 2017. "Business Taxation and Wages: Redistribution and Asymmetric Effects," MAGKS Papers on Economics 201732, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    20. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:espost:182102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.