IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v4y2003p9.html
   My bibliography  Save this article

Improved solutions for vehicle routing and scheduling with fuzzy time windows and fuzzy goal

Author

Listed:
  • Przemysław Kobylański
  • Michał Kulej

Abstract

In this paper, we consider a vehicle routing and scheduling problem with fuzzy time windows and a fuzzy goal. A two-stage method for obtaining the improved optimal solution to the problem under consideration is presented. This method uses the constraint programming as an effective tool for solving the problem.

Suggested Citation

  • Przemysław Kobylański & Michał Kulej, 2003. "Improved solutions for vehicle routing and scheduling with fuzzy time windows and fuzzy goal," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 13(4), pages 97-114.
  • Handle: RePEc:wut:journl:v:4:y:2003:p:9
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/2003410%20-%20published.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marshall L. Fisher & Kurt O. Jörnsten & Oli B. G. Madsen, 1997. "Vehicle Routing with Time Windows: Two Optimization Algorithms," Operations Research, INFORMS, vol. 45(3), pages 488-492, June.
    2. Dubois, Didier & Fortemps, Philippe, 1999. "Computing improved optimal solutions to max-min flexible constraint satisfaction problems," European Journal of Operational Research, Elsevier, vol. 118(1), pages 95-126, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    2. Liu, Fuh-Hwa Franklin & Shen, Sheng-Yuan, 1999. "A route-neighborhood-based metaheuristic for vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 118(3), pages 485-504, November.
    3. Dias, Luis C. & Lamboray, Claude, 2010. "Extensions of the prudence principle to exploit a valued outranking relation," European Journal of Operational Research, Elsevier, vol. 201(3), pages 828-837, March.
    4. Russell Bent & Pascal Van Hentenryck, 2004. "A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 38(4), pages 515-530, November.
    5. Yao, Yu & Zhu, Xiaoning & Dong, Hongyu & Wu, Shengnan & Wu, Hailong & Carol Tong, Lu & Zhou, Xuesong, 2019. "ADMM-based problem decomposition scheme for vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 156-174.
    6. Zhu, Bin & Xu, Zeshui, 2014. "Analytic hierarchy process-hesitant group decision making," European Journal of Operational Research, Elsevier, vol. 239(3), pages 794-801.
    7. Claudio Gambella & Joe Naoum-Sawaya & Bissan Ghaddar, 2018. "The Vehicle Routing Problem with Floating Targets: Formulation and Solution Approaches," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 554-569, August.
    8. Russell, Robert A. & Chiang, Wen-Chyuan, 2006. "Scatter search for the vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 169(2), pages 606-622, March.
    9. Guillaume, Romain & Houé, Raymond & Grabot, Bernard, 2014. "Robust competence assessment for job assignment," European Journal of Operational Research, Elsevier, vol. 238(2), pages 630-644.
    10. Vicky Mak & Andreas Ernst, 2007. "New cutting-planes for the time- and/or precedence-constrained ATSP and directed VRP," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(1), pages 69-98, August.
    11. Han Zheng & Junhua Chen & Xingchen Zhang & Zixian Yang, 2019. "Designing a New Shuttle Service to Meet Large-Scale Instantaneous Peak Demands for Passenger Transportation in a Metropolitan Context: A Green, Low-Cost Mass Transport Option," Sustainability, MDPI, vol. 11(18), pages 1-28, September.
    12. Dubois, D. & Fortemps, Ph., 2005. "Selecting preferred solutions in the minimax approach to dynamic programming problems under flexible constraints," European Journal of Operational Research, Elsevier, vol. 160(3), pages 582-598, February.
    13. Anglani, Alfredo & Grieco, Antonio & Guerriero, Emanuela & Musmanno, Roberto, 2005. "Robust scheduling of parallel machines with sequence-dependent set-up costs," European Journal of Operational Research, Elsevier, vol. 161(3), pages 704-720, March.
    14. Lee, C.Y. & Cetinkaya, S. & Wagelmans, A.P.M., 1999. "A dynamic lot-sizing model with demand time windows," Econometric Institute Research Papers EI 9948-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    15. Hang Xu & Zhi-Long Chen & Srinivas Rajagopal & Sundar Arunapuram, 2003. "Solving a Practical Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 37(3), pages 347-364, August.
    16. Li, Xiangyong & Tian, Peng & Leung, Stephen C.H., 2010. "Vehicle routing problems with time windows and stochastic travel and service times: Models and algorithm," International Journal of Production Economics, Elsevier, vol. 125(1), pages 137-145, May.
    17. Li, Haibing & Lim, Andrew, 2003. "Local search with annealing-like restarts to solve the VRPTW," European Journal of Operational Research, Elsevier, vol. 150(1), pages 115-127, October.
    18. A. Tilmant & P. Fortemps & M. Vanclooster, 2002. "Effect of Averaging Operators in Fuzzy Optimization of Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(1), pages 1-22, February.
    19. Niu, Huimin & Zhou, Xuesong & Tian, Xiaopeng, 2018. "Coordinating assignment and routing decisions in transit vehicle schedules: A variable-splitting Lagrangian decomposition approach for solution symmetry breaking," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 70-101.
    20. Diego B.C. Faneyte & Frits C.R. Spieksma & Gerhard J. Woeginger, 2002. "A branch‐and‐price algorithm for a hierarchical crew scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(8), pages 743-759, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:4:y:2003:p:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.