IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v37y2003i3p347-364.html
   My bibliography  Save this article

Solving a Practical Pickup and Delivery Problem

Author

Listed:
  • Hang Xu

    (Manugistics, Inc., 585 East Swedesford Road, Wayne, Pennsylvania 19087)

  • Zhi-Long Chen

    (Robert H. Smith School of Business, University of Maryland, College Park, Maryland 20742-1815)

  • Srinivas Rajagopal

    (Manugistics, Inc., 585 East Swedesford Road, Wayne, Pennsylvania 19087)

  • Sundar Arunapuram

    (Manugistics, Inc., 585 East Swedesford Road, Wayne, Pennsylvania 19087)

Abstract

We consider a pickup and delivery vehicle routing problem commonly encountered in real-world logistics operations. The problem involves a set of practical complications that have received little attention in the vehicle routing literature. In this problem, there are multiple carriers and multiple vehicle types available to cover a set of pickup and delivery orders, each of which has multiple pickup time windows and multiple delivery time windows. Orders and carrier/vehicle types must satisfy a set of compatibility constraints that specify which orders cannot be covered by which carrier/vehicle types and which orders cannot be shipped together. Order loading and unloading sequence must satisfy the nested precedence constraint that requires that an order cannot be unloaded until all the orders loaded into the truck later than this order are unloaded. Each vehicle trip must satisfy the driver's work rules prescribed by the Department of Transportation which specify legal working hours of a driver. The cost of a trip is determined by several factors including a fixed charge, total mileage, total waiting time, and total layover time of the driver. We propose column generation based solution approaches to this complex problem. The problem is formulated as a set partitioning type formulation containing an exponential number of columns. We apply the standard column generation procedure to solve the linear relaxation of this set partitioning type formulation in which the resulting master problem is a linear program and solved very efficiently by an LP solver, while the resulting subproblems are computationally intractable and solved by fast heuristics. An integer solution is obtained by using an IP solver to solve a restricted version of the original set partitioning type formulation that only contains the columns generated in solving the linear relaxation. The approaches are evaluated based on lower bounds obtained by solving the linear relaxation to optimality by using an exact dynamic programming algorithm to solve the subproblems exactly. It is shown that the approaches are capable of generating near-optimal solutions quickly for randomly generated instances with up to 200 orders. For larger randomly generated instances with up to 500 orders, it is shown that computational times required by these approaches are acceptable.

Suggested Citation

  • Hang Xu & Zhi-Long Chen & Srinivas Rajagopal & Sundar Arunapuram, 2003. "Solving a Practical Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 37(3), pages 347-364, August.
  • Handle: RePEc:inm:ortrsc:v:37:y:2003:i:3:p:347-364
    DOI: 10.1287/trsc.37.3.347.16044
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.37.3.347.16044
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.37.3.347.16044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dumas, Yvan & Desrosiers, Jacques & Soumis, Francois, 1991. "The pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 54(1), pages 7-22, September.
    2. Martin Desrochers & Jacques Desrosiers & Marius Solomon, 1992. "A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 40(2), pages 342-354, April.
    3. Anuj Mehrotra & Michael A. Trick, 1996. "A Column Generation Approach for Graph Coloring," INFORMS Journal on Computing, INFORMS, vol. 8(4), pages 344-354, November.
    4. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    5. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    6. Lawrence D. Bodin, 1990. "Twenty Years of Routing and Scheduling," Operations Research, INFORMS, vol. 38(4), pages 571-579, August.
    7. Laporte, Gilbert, 1992. "The vehicle routing problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(3), pages 345-358, June.
    8. M. W. P. Savelsbergh & M. Sol, 1995. "The General Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 29(1), pages 17-29, February.
    9. Desrochers, Martin & Soumis, Francois, 1988. "A reoptimization algorithm for the shortest path problem with time windows," European Journal of Operational Research, Elsevier, vol. 35(2), pages 242-254, May.
    10. Marshall L. Fisher & Kurt O. Jörnsten & Oli B. G. Madsen, 1997. "Vehicle Routing with Time Windows: Two Optimization Algorithms," Operations Research, INFORMS, vol. 45(3), pages 488-492, June.
    11. Zhi-Long Chen & Warren B. Powell, 1999. "Solving Parallel Machine Scheduling Problems by Column Generation," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 78-94, February.
    12. Karla L. Hoffman & Manfred Padberg, 1993. "Solving Airline Crew Scheduling Problems by Branch-and-Cut," Management Science, INFORMS, vol. 39(6), pages 657-682, June.
    13. Martin Savelsbergh & Marc Sol, 1998. "Drive: Dynamic Routing of Independent Vehicles," Operations Research, INFORMS, vol. 46(4), pages 474-490, August.
    14. Desaulniers, Guy & Lavigne, June & Soumis, Francois, 1998. "Multi-depot vehicle scheduling problems with time windows and waiting costs," European Journal of Operational Research, Elsevier, vol. 111(3), pages 479-494, December.
    15. Niklas Kohl & Jacques Desrosiers & Oli B. G. Madsen & Marius M. Solomon & François Soumis, 1999. "2-Path Cuts for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 33(1), pages 101-116, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Männel, Dirk & Bortfeldt, Andreas, 2018. "Solving the pickup and delivery problem with three-dimensional loading constraints and reloading ban," European Journal of Operational Research, Elsevier, vol. 264(1), pages 119-137.
    2. Ostermeier, Manuel, 2024. "The supply of convenience stores: Challenges of short-distance routing within the constraints of working time regulations," European Journal of Operational Research, Elsevier, vol. 314(3), pages 997-1012.
    3. Eskandarzadeh, Saman & Fahimnia, Behnam, 2022. "Rest break policy comparison for heavy vehicle drivers in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    4. Tilk, Christian & Goel, Asvin, 2020. "Bidirectional labeling for solving vehicle routing and truck driver scheduling problems," European Journal of Operational Research, Elsevier, vol. 283(1), pages 108-124.
    5. Kok, A.L. & Hans, E.W. & Schutten, J.M.J., 2011. "Optimizing departure times in vehicle routes," European Journal of Operational Research, Elsevier, vol. 210(3), pages 579-587, May.
    6. Zhang, Zizhen & Che, Oscar & Cheang, Brenda & Lim, Andrew & Qin, Hu, 2013. "A memetic algorithm for the multiperiod vehicle routing problem with profit," European Journal of Operational Research, Elsevier, vol. 229(3), pages 573-584.
    7. Cortés, Cristián E. & Matamala, Martín & Contardo, Claudio, 2010. "The pickup and delivery problem with transfers: Formulation and a branch-and-cut solution method," European Journal of Operational Research, Elsevier, vol. 200(3), pages 711-724, February.
    8. Sun, Yanshuo & Kirtonia, Sajeeb & Chen, Zhi-Long, 2021. "A survey of finished vehicle distribution and related problems from an optimization perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    9. Farshad Majzoubi & Lihui Bai & Sunderesh S. Heragu, 2021. "The EMS vehicle patient transportation problem during a demand surge," Journal of Global Optimization, Springer, vol. 79(4), pages 989-1006, April.
    10. Männel, Dirk & Bortfeldt, Andreas, 2016. "A hybrid algorithm for the vehicle routing problem with pickup and delivery and three-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 254(3), pages 840-858.
    11. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "A comparison of three idling options in long-haul truck scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 631-647.
    12. Wang, Yu & Chen, Feng & Chen, Zhi-Long, 2018. "Pickup and delivery of automobiles from warehouses to dealers," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 412-430.
    13. Regnier-Coudert, Olivier & McCall, John & Ayodele, Mayowa & Anderson, Steven, 2016. "Truck and trailer scheduling in a real world, dynamic and heterogeneous context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 389-408.
    14. Xiang, Zhihai & Chu, Chengbin & Chen, Haoxun, 2006. "A fast heuristic for solving a large-scale static dial-a-ride problem under complex constraints," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1117-1139, October.
    15. Mayerle, Sérgio Fernando & De Genaro Chiroli, Daiane Maria & Neiva de Figueiredo, João & Rodrigues, Hidelbrando Ferreira, 2020. "The long-haul full-load vehicle routing and truck driver scheduling problem with intermediate stops: An economic impact evaluation of Brazilian policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 36-51.
    16. Xu Cheng & Lixin Tang & Panos Pardalos, 2015. "A Branch-and-Cut algorithm for factory crane scheduling problem," Journal of Global Optimization, Springer, vol. 63(4), pages 729-755, December.
    17. Goel, Asvin, 2018. "Legal aspects in road transport optimization in Europe," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 144-162.
    18. Wang, Zhongxiang & Haghani, Ali, 2020. "Column generation-based stochastic school bell time and bus scheduling optimization," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1087-1102.
    19. Goel, Asvin, 2014. "Hours of service regulations in the United States and the 2013 rule change," Transport Policy, Elsevier, vol. 33(C), pages 48-55.
    20. Mor, Andrea & Archetti, Claudia & Jabali, Ola & Simonetto, Alberto & Speranza, M. Grazia, 2022. "The Bi-objective Long-haul Transportation Problem on a Road Network," Omega, Elsevier, vol. 106(C).
    21. Daiane Maria Genaro Chiroli & Sérgio Fernando Mayerle & João Neiva Figueiredo, 2022. "Using state-space shortest-path heuristics to solve the long-haul point-to-point vehicle routing and driver scheduling problem subject to hours-of-service regulatory constraints," Journal of Heuristics, Springer, vol. 28(1), pages 23-59, February.
    22. Brønmo, Geir & Nygreen, Bjørn & Lysgaard, Jens, 2010. "Column generation approaches to ship scheduling with flexible cargo sizes," European Journal of Operational Research, Elsevier, vol. 200(1), pages 139-150, January.
    23. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    24. Francis, Peter & Zhang, Guangming & Smilowitz, Karen, 2007. "Improved modeling and solution methods for the multi-resource routing problem," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1045-1059, August.
    25. Pang, King-Wah & Xu, Zhou & Li, Chung-Lun, 2011. "Ship routing problem with berthing time clash avoidance constraints," International Journal of Production Economics, Elsevier, vol. 131(2), pages 752-762, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vis, Iris F.A., 2006. "Survey of research in the design and control of automated guided vehicle systems," European Journal of Operational Research, Elsevier, vol. 170(3), pages 677-709, May.
    2. Sun, Yanshuo & Chen, Zhi-Long & Zhang, Lei, 2020. "Nonprofit peer-to-peer ridesharing optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    3. Rosemary T. Berger & Collette R. Coullard & Mark S. Daskin, 2007. "Location-Routing Problems with Distance Constraints," Transportation Science, INFORMS, vol. 41(1), pages 29-43, February.
    4. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    5. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    6. Stefan Ropke & Jean-François Cordeau, 2009. "Branch and Cut and Price for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 43(3), pages 267-286, August.
    7. Sarac, Abdulkadir & Batta, Rajan & Rump, Christopher M., 2006. "A branch-and-price approach for operational aircraft maintenance routing," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1850-1869, December.
    8. Stefan Irnich & Daniel Villeneuve, 2006. "The Shortest-Path Problem with Resource Constraints and k -Cycle Elimination for k (ge) 3," INFORMS Journal on Computing, INFORMS, vol. 18(3), pages 391-406, August.
    9. Le-Anh, T. & de Koster, M.B.M. & Yu, Y., 2006. "Performance Evaluation of Real-time Scheduling Approaches in Vehicle-based Internal Transport Systems," ERIM Report Series Research in Management ERS-2006-063-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    10. Marco E. Lübbecke & Uwe T. Zimmermann, 2003. "Engine Routing and Scheduling at Industrial In-Plant Railroads," Transportation Science, INFORMS, vol. 37(2), pages 183-197, May.
    11. Jans, Raf, 2010. "Classification of Dantzig-Wolfe reformulations for binary mixed integer programming problems," European Journal of Operational Research, Elsevier, vol. 204(2), pages 251-254, July.
    12. Daniel Villeneuve & Jacques Desrosiers & Marco Lübbecke & François Soumis, 2005. "On Compact Formulations for Integer Programs Solved by Column Generation," Annals of Operations Research, Springer, vol. 139(1), pages 375-388, October.
    13. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    14. Le-Anh, T. & de Koster, M.B.M., 2004. "Real-Time Scheduling Approaches for Vehicle-Based Internal Transport Systems," ERIM Report Series Research in Management ERS-2004-056-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    15. Degraeve, Z. & Jans, R.F., 2003. "A New Dantzig-Wolfe Reformulation And Branch-And-Price Algorithm For The Capacitated Lot Sizing Problem With Set Up Times," ERIM Report Series Research in Management ERS-2003-010-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Zhi‐Long Chen & Warren B. Powell, 2003. "Exact algorithms for scheduling multiple families of jobs on parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(7), pages 823-840, October.
    17. Timo Gschwind & Stefan Irnich, 2012. "Effective Handling of Dynamic Time Windows and Synchronization with Precedences for Exact Vehicle Routing," Working Papers 1211, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    18. Francis, Peter & Zhang, Guangming & Smilowitz, Karen, 2007. "Improved modeling and solution methods for the multi-resource routing problem," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1045-1059, August.
    19. Taş, D. & Gendreau, M. & Dellaert, N. & van Woensel, T. & de Kok, A.G., 2014. "Vehicle routing with soft time windows and stochastic travel times: A column generation and branch-and-price solution approach," European Journal of Operational Research, Elsevier, vol. 236(3), pages 789-799.
    20. Yao, Yu & Zhu, Xiaoning & Dong, Hongyu & Wu, Shengnan & Wu, Hailong & Carol Tong, Lu & Zhou, Xuesong, 2019. "ADMM-based problem decomposition scheme for vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 156-174.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:37:y:2003:i:3:p:347-364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.