IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v34y2024i4p231-250id13.html
   My bibliography  Save this article

A queueing model for an automatic manufacturing system with disasters, breakdowns and vacations. Optimal design and analysis

Author

Listed:
  • Nada Riheb Yatim
  • Amina Angelika Bouchentouf
  • Pikkala Vijaya Laxmi

Abstract

We study a queueing model with disasters, working breakdowns, balking, reneging, and vacations. This is a novel and realistic queueing model that captures the complex dynamics and behaviors of an automatic manufacturing system (AMS) with various uncertainties and disruptions. The system loses all customers when a disaster occurs and repairs start immediately. New customers get slower service during breakdowns. We use matrix methods to find the system’s steady state along with performance measures like the expected number of customers lost, the expected waiting time, and system reliability. We also optimize the system parameters (system capacity, number of servers, service rates) to minimize the cost function using a combined direct search method and quasi-Newton method. Our results can enhance the AMS’s performance, profit, and customer satisfaction.

Suggested Citation

  • Nada Riheb Yatim & Amina Angelika Bouchentouf & Pikkala Vijaya Laxmi, 2024. "A queueing model for an automatic manufacturing system with disasters, breakdowns and vacations. Optimal design and analysis," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(4), pages 231-250.
  • Handle: RePEc:wut:journl:v:34:y:2024:i:4:p:231-250:id:13
    DOI: 10.37190/ord240413
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/ord2024vol34no4_13.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.37190/ord240413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mouloud Cherfaoui & Amina Angelika Bouchentouf & Mohamed Boualem, 2023. "Modelling and simulation of Bernoulli feedback queue with general customers' impatience under variant vacation policy," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 46(4), pages 451-480.
    2. Amina Angelika Bouchentouf & Mouloud Cherfaoui & Mohamed Boualem, 2019. "Performance and economic analysis of a single server feedback queueing model with vacation and impatient customers," OPSEARCH, Springer;Operational Research Society of India, vol. 56(1), pages 300-323, March.
    3. Stephen C. Graves, 1982. "The Application of Queueing Theory to Continuous Perishable Inventory Systems," Management Science, INFORMS, vol. 28(4), pages 400-406, April.
    4. Naishuo Tian & Zhe George Zhang, 2006. "Vacation Queueing Models Theory and Applications," International Series in Operations Research and Management Science, Springer, number 978-0-387-33723-4.
    5. Mustafa Demircioglu & Herwig Bruneel & Sabine Wittevrongel, 2021. "Analysis of a Discrete-Time Queueing Model with Disasters," Mathematics, MDPI, vol. 9(24), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amina Angelika Bouchentouf & Abdelhak Guendouzi, 2021. "Single Server Batch Arrival Bernoulli Feedback Queueing System with Waiting Server, K-Variant Vacations and Impatient Customers," SN Operations Research Forum, Springer, vol. 2(1), pages 1-23, March.
    2. Ramachandran Remya & Amina Angelika Bouchentouf & Kaliappan Kalidass, 2024. "Cost optimization of a M/M/1/WV&MAV queueing system using Newton–Raphson and particle swarm optimization techniques," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(3), pages 205-220.
    3. Gabi Hanukov & Uri Yechiali, 2024. "Orbit while in service," Operational Research, Springer, vol. 24(2), pages 1-32, June.
    4. Amina Angelika Bouchentouf & Lahcene Yahiaoui & Mokhtar Kadi & Shakir Majid, 2020. "Impatient customers in Markovian queue with Bernoulli feedback and waiting server under variant working vacation policy," Operations Research and Decisions, Wroclaw University of Science Technology, Faculty of Management, vol. 30(4), pages 5-28.
    5. Yaroslav Rosokha & Chen Wei, 2024. "Cooperation in Queueing Systems," Management Science, INFORMS, vol. 70(11), pages 7597-7616, November.
    6. Priyanka Kalita & Gautam Choudhury & Dharmaraja Selvamuthu, 2020. "Analysis of Single Server Queue with Modified Vacation Policy," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 511-553, June.
    7. Manickam Vadivukarasi & Kaliappan Kalidass, 2021. "Discussion on the transient behavior of single server Markovian multiple variant vacation queues," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 123-146.
    8. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    9. Yuying Zhang & Dequan Yue & Wuyi Yue, 2022. "A queueing-inventory system with random order size policy and server vacations," Annals of Operations Research, Springer, vol. 310(2), pages 595-620, March.
    10. Yi Peng & Jinbiao Wu, 2020. "A Lévy-Driven Stochastic Queueing System with Server Breakdowns and Vacations," Mathematics, MDPI, vol. 8(8), pages 1-12, July.
    11. Jianjun Li & Liwei Liu & Tao Jiang, 2018. "Analysis of an M/G/1 queue with vacations and multiple phases of operation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 51-72, February.
    12. Ambika, K. & Vijayashree, K.V. & Janani, B., 2024. "Modelling and analysis of production management system using vacation queueing theoretic approach," Applied Mathematics and Computation, Elsevier, vol. 479(C).
    13. Srinivas R. Chakravarthy & Serife Ozkar, 2016. "Crowdsourcing and Stochastic Modeling," Business and Management Research, Business and Management Research, Sciedu Press, vol. 5(2), pages 19-30, June.
    14. Zsolt Saffer & Sergey Andreev & Yevgeni Koucheryavy, 2016. "$$M/D^{[y]}/1$$ M / D [ y ] / 1 Periodically gated vacation model and its application to IEEE 802.16 network," Annals of Operations Research, Springer, vol. 239(2), pages 497-520, April.
    15. Agassi Melikov & Laman Poladova & Sandhya Edayapurath & Janos Sztrik, 2023. "Single-Server Queuing-Inventory Systems with Negative Customers and Catastrophes in the Warehouse," Mathematics, MDPI, vol. 11(10), pages 1-16, May.
    16. Shunfu Jin & Xiuchen Qie & Wenjuan Zhao & Wuyi Yue & Yutaka Takahashi, 2020. "A clustered virtual machine allocation strategy based on a sleep-mode with wake-up threshold in a cloud environment," Annals of Operations Research, Springer, vol. 293(1), pages 193-212, October.
    17. Manickam Vadivukarasi & Kaliappan Kalidass, 2021. "Discussion on the transient behavior of single server Markovian multiple variant vacation queues," Operations Research and Decisions, Wroclaw University of Science Technology, Faculty of Management, vol. 31, pages 123-146.
    18. Michael N. Katehakis & Benjamin Melamed & Jim Junmin Shi, 2022. "Optimal replenishment rate for inventory systems with compound Poisson demands and lost sales: a direct treatment of time-average cost," Annals of Operations Research, Springer, vol. 317(2), pages 665-691, October.
    19. Opher Baron & Oded Berman & David Perry, 2010. "Continuous review inventory models for perishable items ordered in batches," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(2), pages 217-247, October.
    20. Stefan Creemers & Marc Lambrecht, 2010. "Queueing models for appointment-driven systems," Annals of Operations Research, Springer, vol. 178(1), pages 155-172, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:34:y:2024:i:4:p:231-250:id:13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.