IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v34y2024i4p231-250id13.html
   My bibliography  Save this article

A queueing model for an automatic manufacturing system with disasters, breakdowns and vacations. Optimal design and analysis

Author

Listed:
  • Nada Riheb Yatim
  • Amina Angelika Bouchentouf
  • Pikkala Vijaya Laxmi

Abstract

We study a queueing model with disasters, working breakdowns, balking, reneging, and vacations. This is a novel and realistic queueing model that captures the complex dynamics and behaviors of an automatic manufacturing system (AMS) with various uncertainties and disruptions. The system loses all customers when a disaster occurs and repairs start immediately. New customers get slower service during breakdowns. We use matrix methods to find the system’s steady state along with performance measures like the expected number of customers lost, the expected waiting time, and system reliability. We also optimize the system parameters (system capacity, number of servers, service rates) to minimize the cost function using a combined direct search method and quasi-Newton method. Our results can enhance the AMS’s performance, profit, and customer satisfaction.

Suggested Citation

  • Nada Riheb Yatim & Amina Angelika Bouchentouf & Pikkala Vijaya Laxmi, 2024. "A queueing model for an automatic manufacturing system with disasters, breakdowns and vacations. Optimal design and analysis," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(4), pages 231-250.
  • Handle: RePEc:wut:journl:v:34:y:2024:i:4:p:231-250:id:13
    DOI: 10.37190/ord240413
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/ord2024vol34no4_13.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.37190/ord240413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stephen C. Graves, 1982. "The Application of Queueing Theory to Continuous Perishable Inventory Systems," Management Science, INFORMS, vol. 28(4), pages 400-406, April.
    2. Naishuo Tian & Zhe George Zhang, 2006. "Vacation Queueing Models Theory and Applications," International Series in Operations Research and Management Science, Springer, number 978-0-387-33723-4, July-Dece.
    3. Mouloud Cherfaoui & Amina Angelika Bouchentouf & Mohamed Boualem, 2023. "Modelling and simulation of Bernoulli feedback queue with general customers' impatience under variant vacation policy," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 46(4), pages 451-480.
    4. Mustafa Demircioglu & Herwig Bruneel & Sabine Wittevrongel, 2021. "Analysis of a Discrete-Time Queueing Model with Disasters," Mathematics, MDPI, vol. 9(24), pages 1-22, December.
    5. Amina Angelika Bouchentouf & Mouloud Cherfaoui & Mohamed Boualem, 2019. "Performance and economic analysis of a single server feedback queueing model with vacation and impatient customers," OPSEARCH, Springer;Operational Research Society of India, vol. 56(1), pages 300-323, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amina Angelika Bouchentouf & Abdelhak Guendouzi, 2021. "Single Server Batch Arrival Bernoulli Feedback Queueing System with Waiting Server, K-Variant Vacations and Impatient Customers," SN Operations Research Forum, Springer, vol. 2(1), pages 1-23, March.
    2. Ramachandran Remya & Amina Angelika Bouchentouf & Kaliappan Kalidass, 2024. "Cost optimization of a M/M/1/WV&MAV queueing system using Newton–Raphson and particle swarm optimization techniques," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(3), pages 205-220.
    3. Gabi Hanukov & Uri Yechiali, 2024. "Orbit while in service," Operational Research, Springer, vol. 24(2), pages 1-32, June.
    4. Ravichandran, N., 1995. "Stochastic analysis of a continuous review perishable inventory system with positive lead time and Poisson demand," European Journal of Operational Research, Elsevier, vol. 84(2), pages 444-457, July.
    5. Amina Angelika Bouchentouf & Lahcene Yahiaoui & Mokhtar Kadi & Shakir Majid, 2020. "Impatient customers in Markovian queue with Bernoulli feedback and waiting server under variant working vacation policy," Operations Research and Decisions, Wroclaw University of Science Technology, Faculty of Management, vol. 30(4), pages 5-28.
    6. Divya Velayudhan Nair & Achyutha Krishnamoorthy & Agassi Melikov & Sevinj Aliyeva, 2021. "MMAP/(PH,PH)/1 Queue with Priority Loss through Feedback," Mathematics, MDPI, vol. 9(15), pages 1-26, July.
    7. Yaroslav Rosokha & Chen Wei, 2024. "Cooperation in Queueing Systems," Management Science, INFORMS, vol. 70(11), pages 7597-7616, November.
    8. Chahal, Parmeet Kaur & Kumar, Kamlesh & Soodan, Bhavneet Singh, 2024. "Grey wolf algorithm for cost optimization of cloud computing repairable system with N-policy, discouragement and two-level Bernoulli feedback," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 545-569.
    9. Sem Borst & Onno Boxma, 2018. "Polling: past, present, and perspective," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 335-369, October.
    10. Priyanka Kalita & Gautam Choudhury & Dharmaraja Selvamuthu, 2020. "Analysis of Single Server Queue with Modified Vacation Policy," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 511-553, June.
    11. Manickam Vadivukarasi & Kaliappan Kalidass, 2021. "Discussion on the transient behavior of single server Markovian multiple variant vacation queues," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 123-146.
    12. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    13. Yuying Zhang & Dequan Yue & Wuyi Yue, 2022. "A queueing-inventory system with random order size policy and server vacations," Annals of Operations Research, Springer, vol. 310(2), pages 595-620, March.
    14. Houyuan Jiang & Zhan Pang & Sergei Savin, 2012. "Performance-Based Contracts for Outpatient Medical Services," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 654-669, October.
    15. Shan Gao & Zaiming Liu & Qiwen Du, 2014. "Discrete-Time Gix/Geo/1/N Queue With Working Vacations And Vacation Interruption," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 31(01), pages 1-22.
    16. Wee Meng Yeo & Xue-Ming Yuan & Joyce Mei Wan Low, 2017. "On $$M^{X}/G(M/H)/1$$ M X / G ( M / H ) / 1 retrial system with vacation: service helpline performance measurement," Annals of Operations Research, Springer, vol. 248(1), pages 553-578, January.
    17. Yi Peng & Jinbiao Wu, 2020. "A Lévy-Driven Stochastic Queueing System with Server Breakdowns and Vacations," Mathematics, MDPI, vol. 8(8), pages 1-12, July.
    18. Pengfei Guo & Zhe George Zhang, 2013. "Strategic Queueing Behavior and Its Impact on System Performance in Service Systems with the Congestion-Based Staffing Policy," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 118-131, September.
    19. Jianjun Li & Liwei Liu & Tao Jiang, 2018. "Analysis of an M/G/1 queue with vacations and multiple phases of operation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 51-72, February.
    20. Ambika, K. & Vijayashree, K.V. & Janani, B., 2024. "Modelling and analysis of production management system using vacation queueing theoretic approach," Applied Mathematics and Computation, Elsevier, vol. 479(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:34:y:2024:i:4:p:231-250:id:13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.