IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v31y2021i1p123-146id1556.html
   My bibliography  Save this article

Discussion on the transient behavior of single server Markovian multiple variant vacation queues

Author

Listed:
  • Manickam Vadivukarasi
  • Kaliappan Kalidass

Abstract

We consider an M/M/1 queue where beneficiary visits occur singly. Once the beneficiary level in the system becomes zero, the server takes a vacation at once. If the server finds no beneficiaries in the system, then the server can take another vacation after the return from the vacation. This process continues until the server has exhaustively taken all the J vacations. The closed form transient solution of the considered model and some important time-dependent performance measures are obtained. Further, the steady state system size distribution is obtained from the time-dependent solution. A stochastic decomposition structure of waiting time distribution and expression for the additional waiting time due to the presence of server vacations are studied. Numerical assessments are presented.

Suggested Citation

  • Manickam Vadivukarasi & Kaliappan Kalidass, 2021. "Discussion on the transient behavior of single server Markovian multiple variant vacation queues," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 123-146.
  • Handle: RePEc:wut:journl:v:31:y:2021:i:1:p:123-146:id:1556
    DOI: 10.37190/ord210107
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/1556%20-%20published.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.37190/ord210107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ammar, Sherif I., 2015. "Transient analysis of an M/M/1 queue with impatient behavior and multiple vacations," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 97-105.
    2. Naishuo Tian & Zhe George Zhang, 2006. "Vacation Queueing Models Theory and Applications," International Series in Operations Research and Management Science, Springer, number 978-0-387-33723-4, April.
    3. K. Kalidass & J. Gnanaraj & S. Gopinath & Ramanath Kasturi, 2014. "Transient analysis of an M/M/1 queue with a repairable server and multiple vacations," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 6(2), pages 193-216.
    4. Shweta Upadhyaya, 2016. "Queueing systems with vacation: an overview," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 9(2), pages 167-213.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Vadivukarasi & K. Kalidass, 2022. "Discussion on the transient solution of single server Markovian multiple variant vacation queues with disasters," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1352-1376, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manickam Vadivukarasi & Kaliappan Kalidass, 2021. "Discussion on the transient behavior of single server Markovian multiple variant vacation queues," Operations Research and Decisions, Wroclaw University of Science Technology, Faculty of Management, vol. 31, pages 123-146.
    2. M. Vadivukarasi & K. Kalidass, 2022. "Discussion on the transient solution of single server Markovian multiple variant vacation queues with disasters," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1352-1376, December.
    3. M. I. G. Suranga Sampath & K. Kalidass & Jicheng Liu, 2020. "Transient Analysis of an M/M/1 Queueing System Subjected to Multiple Differentiated Vacations, Impatient Customers and a Waiting Server with Application to IEEE 802.16E Power Saving Mechanism," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(1), pages 297-320, March.
    4. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    5. Xu Jia & Liu Liwei & Zhu Taozeng, 2018. "Transient Analysis of a Two-Heterogeneous Severs Queue with Impatient Behaviour and Multiple Vacations," Journal of Systems Science and Information, De Gruyter, vol. 6(1), pages 69-84, February.
    6. Amina Angelika Bouchentouf & Abdelhak Guendouzi, 2021. "Single Server Batch Arrival Bernoulli Feedback Queueing System with Waiting Server, K-Variant Vacations and Impatient Customers," SN Operations Research Forum, Springer, vol. 2(1), pages 1-23, March.
    7. G. K. Tamrakar & A. Banerjee, 2020. "On steady-state joint distribution of an infinite buffer batch service Poisson queue with single and multiple vacation," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1337-1373, December.
    8. Sem Borst & Onno Boxma, 2018. "Polling: past, present, and perspective," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 335-369, October.
    9. Priyanka Kalita & Gautam Choudhury & Dharmaraja Selvamuthu, 2020. "Analysis of Single Server Queue with Modified Vacation Policy," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 511-553, June.
    10. R. Sudhesh & P. Savitha & S. Dharmaraja, 2017. "Transient analysis of a two-heterogeneous servers queue with system disaster, server repair and customers’ impatience," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 179-205, April.
    11. Yuying Zhang & Dequan Yue & Wuyi Yue, 2022. "A queueing-inventory system with random order size policy and server vacations," Annals of Operations Research, Springer, vol. 310(2), pages 595-620, March.
    12. Houyuan Jiang & Zhan Pang & Sergei Savin, 2012. "Performance-Based Contracts for Outpatient Medical Services," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 654-669, October.
    13. Shan Gao & Zaiming Liu & Qiwen Du, 2014. "Discrete-Time Gix/Geo/1/N Queue With Working Vacations And Vacation Interruption," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 31(01), pages 1-22.
    14. Wee Meng Yeo & Xue-Ming Yuan & Joyce Mei Wan Low, 2017. "On $$M^{X}/G(M/H)/1$$ M X / G ( M / H ) / 1 retrial system with vacation: service helpline performance measurement," Annals of Operations Research, Springer, vol. 248(1), pages 553-578, January.
    15. Yi Peng & Jinbiao Wu, 2020. "A Lévy-Driven Stochastic Queueing System with Server Breakdowns and Vacations," Mathematics, MDPI, vol. 8(8), pages 1-12, July.
    16. Pengfei Guo & Zhe George Zhang, 2013. "Strategic Queueing Behavior and Its Impact on System Performance in Service Systems with the Congestion-Based Staffing Policy," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 118-131, September.
    17. Jianjun Li & Liwei Liu & Tao Jiang, 2018. "Analysis of an M/G/1 queue with vacations and multiple phases of operation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 51-72, February.
    18. Achyutha Krishnamoorthy & Anu Nuthan Joshua & Dmitry Kozyrev, 2021. "Analysis of a Batch Arrival, Batch Service Queuing-Inventory System with Processing of Inventory While on Vacation," Mathematics, MDPI, vol. 9(4), pages 1-29, February.
    19. Srinivas R. Chakravarthy & Serife Ozkar, 2016. "Crowdsourcing and Stochastic Modeling," Business and Management Research, Business and Management Research, Sciedu Press, vol. 5(2), pages 19-30, June.
    20. Zsolt Saffer & Sergey Andreev & Yevgeni Koucheryavy, 2016. "$$M/D^{[y]}/1$$ M / D [ y ] / 1 Periodically gated vacation model and its application to IEEE 802.16 network," Annals of Operations Research, Springer, vol. 239(2), pages 497-520, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:31:y:2021:i:1:p:123-146:id:1556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.