IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v34y2024i1p119-129id6.html
   My bibliography  Save this article

Goodness and lack of fit tests to pretest normality when comparing means

Author

Listed:
  • Pablo Flores
  • María de Lourdes Palacios

Abstract

Previous studies show that processes related to traditional pretests to prove the perfect fulfillment of assumptions in comparison means tests lead to severe alterations in the overall Type I error probability and power. These problems seem to be overcome when pretests based on an equivalence approach are used. The paper proposes a lack of fit tests based on equivalence to pretest normality on homoscedastic samples with measurable departures from normality. The Type I error probability and power produced by this equivalence pretest are compared with two traditional goodness of fit pretests and with the direct use of the t-Student and Wilcoxon test of means comparison. Furthermore, since the irrelevance limit for the lack of fit test is an arbitrary value, we propose a non-subjective methodology to find it. Results show that this proposed equivalence test controls the overall Type I Error Probability and produces adequate power; therefore, its use is recommended.

Suggested Citation

  • Pablo Flores & María de Lourdes Palacios, 2024. "Goodness and lack of fit tests to pretest normality when comparing means," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(1), pages 119-129.
  • Handle: RePEc:wut:journl:v:34:y:2024:i:1:p:119-129:id:6
    DOI: 10.37190/ord240106
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/ord2024vol34no1_6.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.37190/ord240106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Allen Fleishman, 1978. "A method for simulating non-normal distributions," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 521-532, December.
    2. Dieter Rasch & Klaus Kubinger & Karl Moder, 2011. "The two-sample t test: pre-testing its assumptions does not pay off," Statistical Papers, Springer, vol. 52(1), pages 219-231, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schinckus, Christophe, 2015. "The valuation of social impact bonds: An introductory perspective with the Peterborough SIB," Research in International Business and Finance, Elsevier, vol. 35(C), pages 104-110.
    2. Max Auerswald & Morten Moshagen, 2015. "Generating Correlated, Non-normally Distributed Data Using a Non-linear Structural Model," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 920-937, December.
    3. Mohan D. Pant & Todd C. Headrick, 2017. "Simulating Uniform- and Triangular- Based Double Power Method Distributions," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(1), pages 1-1.
    4. Leonie Kuen & Fiona Schürmann & Daniel Westmattelmann & Sophie Hartwig & Shay Tzafrir & Gerhard Schewe, 2023. "Trust transfer effects and associated risks in telemedicine adoption," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    5. Schinckus, Christophe, 2018. "The valuation of social impact bonds: An introductory perspective with the Peterborough SIB," Research in International Business and Finance, Elsevier, vol. 45(C), pages 1-6.
    6. Pelagatti, Matteo M. & Sen, Pranab K., 2013. "Rank tests for short memory stationarity," Journal of Econometrics, Elsevier, vol. 172(1), pages 90-105.
    7. Emanuela Raffinetti & Pier Alda Ferrari, 2021. "A dependence measure flow tree through Monte Carlo simulations," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(2), pages 467-496, April.
    8. Al-Subaihi, Ali A., 2004. "Simulating Correlated Multivariate Pseudorandom Numbers," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 9(i04).
    9. Yen Lee & David Kaplan, 2018. "Generating Multivariate Ordinal Data via Entropy Principles," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 156-181, March.
    10. M Hashem Pesaran & Takashi Yamagata, 2012. "Testing CAPM with a Large Number of Assets," Discussion Papers 12/05, Department of Economics, University of York.
    11. David Curtis, 2024. "Welch’s t test is more sensitive to real world violations of distributional assumptions than student’s t test but logistic regression is more robust than either," Statistical Papers, Springer, vol. 65(6), pages 3981-3989, August.
    12. Beasley, T. Mark & Zumbo, Bruno D., 2003. "Comparison of aligned Friedman rank and parametric methods for testing interactions in split-plot designs," Computational Statistics & Data Analysis, Elsevier, vol. 42(4), pages 569-593, April.
    13. Irmer, Julien Patrick & Klein, Andreas & Schermelleh-Engel, Karin, 2024. "A General Model-Implied Simulation-Based Power Estimation Method for Correctly and Misspecfied Models: Applications to Nonlinear and Linear Structural Equation Models," OSF Preprints pe5bj, Center for Open Science.
    14. Fei Gu & Hao Wu, 2016. "Raw Data Maximum Likelihood Estimation for Common Principal Component Models: A State Space Approach," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 751-773, September.
    15. Pasquale Dolce & Cristina Davino & Domenico Vistocco, 2022. "Quantile composite-based path modeling: algorithms, properties and applications," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 909-949, December.
    16. Peter Wludyka, 1999. "Two non-parametric, analysis-of-means-type tests for homogeneity of variances," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(2), pages 243-256.
    17. Yadira Pazmiño & José Juan de Felipe & Marc Vallbé & Franklin Cargua & Luis Quevedo, 2021. "Identification of a Set of Variables for the Classification of Páramo Soils Using a Nonparametric Model, Remote Sensing, and Organic Carbon," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    18. Po-Hsien Huang, 2017. "Asymptotics of AIC, BIC, and RMSEA for Model Selection in Structural Equation Modeling," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 407-426, June.
    19. Ke-Hai Yuan & Peter Bentler, 2002. "On robusiness of the normal-theory based asymptotic distributions of three reliability coefficient estimates," Psychometrika, Springer;The Psychometric Society, vol. 67(2), pages 251-259, June.
    20. Vacca, Gianmarco & Zoia, Maria Grazia, 2019. "Kurtosis analysis in GARCH models with Gram–Charlier-like innovations," Economics Letters, Elsevier, vol. 183(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:34:y:2024:i:1:p:119-129:id:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.