IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v33y2023i3p29-44id2.html
   My bibliography  Save this article

An adaptive method to solve multilevel multiobjective linear programming problems

Author

Listed:
  • Mustapha Kaci
  • Sonia Radjef

Abstract

This paper is a follow-up to a previous work where we defined and generated the set of all possible compromises of multilevel multiobjective linear programming problems (ML-MOLPP). We introduce a new algorithm to solve ML-MOLPP in which the adaptive method of linear programming is nested. First, we start by generating the set of all possible compromises (set of all non-dominated solutions). After that, an algorithm based on the adaptive method of linear programming is developed to select the best compromise among all the possible settlements achieved. This method will allow us to transform the initial multilevel problem into an ML-MOLPP with bonded variables. Then, apply the adaptive method which is the most efficient to solve all the multiobjective linear programming problems involved in the resolution process instead of the simplex method. Finally, all the construction stages are carefully checked and illustrated with a numerical example.

Suggested Citation

  • Mustapha Kaci & Sonia Radjef, 2023. "An adaptive method to solve multilevel multiobjective linear programming problems," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(3), pages 29-44.
  • Handle: RePEc:wut:journl:v:33:y:2023:i:3:p:29-44:id:2
    DOI: 10.37190/ord230302
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/ord2023vol33no3_2.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.37190/ord230302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mahmoud A. Abo-Sinna & Ibrahim A. Baky, 2010. "Fuzzy Goal Programming Procedure to Bilevel Multiobjective Linear Fractional Programming Problems," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2010, pages 1-15, March.
    2. Anandalingam, G. & Apprey, Victor, 1991. "Multi-level programming and conflict resolution," European Journal of Operational Research, Elsevier, vol. 51(2), pages 233-247, March.
    3. Jerome Bracken & James T. McGill, 1973. "Mathematical Programs with Optimization Problems in the Constraints," Operations Research, INFORMS, vol. 21(1), pages 37-44, February.
    4. Dorota Kuchta, 2005. "Fuzzy solution of the linear programming problem with interval coefficients in the constraints," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 15(3-4), pages 35-42.
    5. Jerome Bracken & James T. McGill, 1974. "Technical Note—A Method for Solving Mathematical Programs with Nonlinear Programs in the Constraints," Operations Research, INFORMS, vol. 22(5), pages 1097-1101, October.
    6. Kailash Lachhwani, 2021. "Solving the general fully neutrosophic multi-level multiobjective linear programming problems," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 1192-1216, December.
    7. Pramanik, Surapati & Roy, Tapan Kumar, 2007. "Fuzzy goal programming approach to multilevel programming problems," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1151-1166, January.
    8. Wasim Akram Mandal & Sahidul Islam, 2017. "Multiobjective geometric programming problem under uncertainty," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 27(4), pages 85-109.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tilahun, Surafel Luleseged, 2019. "Feasibility reduction approach for hierarchical decision making with multiple objectives," Operations Research Perspectives, Elsevier, vol. 6(C).
    2. Lachhwani, Kailash, 2015. "Modified FGP approach for multi-level multi objective linear fractional programming problems," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1038-1049.
    3. Hua Ke & Junjie Ma & Guangdong Tian, 2017. "Hybrid multilevel programming with uncertain random parameters," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 589-596, March.
    4. George E. Monahan, 1996. "Finding saddle points on polyhedra: Solving certain continuous minimax problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(6), pages 821-837, September.
    5. Mahmoud A. Abo-Sinna & Ibrahim A. Baky, 2010. "Fuzzy Goal Programming Procedure to Bilevel Multiobjective Linear Fractional Programming Problems," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2010, pages 1-15, March.
    6. Rocco S, Claudio M. & Ramirez-Marquez, José Emmanuel, 2009. "Deterministic network interdiction optimization via an evolutionary approach," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 568-576.
    7. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    8. Lei Fang & Hecheng Li, 2013. "Lower bound of cost efficiency measure in DEA with incomplete price information," Journal of Productivity Analysis, Springer, vol. 40(2), pages 219-226, October.
    9. Shuang Ma & Gang Du & Jianxin (Roger) Jiao & Ruchuan Zhang, 2016. "Hierarchical game joint optimization for product family-driven modular design," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(12), pages 1496-1509, December.
    10. Rebeca Ramirez Acosta & Chathura Wanigasekara & Emilie Frost & Tobias Brandt & Sebastian Lehnhoff & Christof Büskens, 2023. "Integration of Intelligent Neighbourhood Grids to the German Distribution Grid: A Perspective," Energies, MDPI, vol. 16(11), pages 1-16, May.
    11. Karabulut, Ezgi & Aras, Necati & Kuban Altınel, İ., 2017. "Optimal sensor deployment to increase the security of the maximal breach path in border surveillance," European Journal of Operational Research, Elsevier, vol. 259(1), pages 19-36.
    12. Bo Zeng, 2020. "A Practical Scheme to Compute the Pessimistic Bilevel Optimization Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1128-1142, October.
    13. Josip Matejaš & Tunjo Perić & Danijel Mlinarić, 2021. "Which efficient solution in multi objective programming problem should be taken?," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 967-987, September.
    14. Christine Tawfik & Sabine Limbourg, 2019. "A Bilevel Model for Network Design and Pricing Based on a Level-of-Service Assessment," Transportation Science, INFORMS, vol. 53(6), pages 1609-1626, November.
    15. Juan Sebastian Roncancio & José Vuelvas & Diego Patino & Carlos Adrián Correa-Flórez, 2022. "Flower Greenhouse Energy Management to Offer Local Flexibility Markets," Energies, MDPI, vol. 15(13), pages 1-20, June.
    16. Guangquan Zhang & Jie Lu, 2010. "Fuzzy bilevel programming with multiple objectives and cooperative multiple followers," Journal of Global Optimization, Springer, vol. 47(3), pages 403-419, July.
    17. Konstantinos Ziliaskopoulos & Konstantinos Papalamprou, 2022. "A Bilevel Linear Programming Model for Developing a Subsidy Policy to Minimize the Environmental Impact of the Agricultural Sector," Sustainability, MDPI, vol. 14(13), pages 1-10, June.
    18. Lv, J. & Li, Y.P. & Huang, G.H. & Ding, Y.K. & Li, X. & Li, Y., 2022. "Planning energy economy and eco-environment nexus system under uncertainty: A copula-based stochastic multi-level programming method," Applied Energy, Elsevier, vol. 312(C).
    19. Ankur Sinha & Zhichao Lu & Kalyanmoy Deb & Pekka Malo, 2020. "Bilevel optimization based on iterative approximation of multiple mappings," Journal of Heuristics, Springer, vol. 26(2), pages 151-185, April.
    20. Syed Aqib Jalil & Shakeel Javaid & Syed Mohd Muneeb, 2018. "A decentralized multi-level decision making model for solid transportation problem with uncertainty," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(5), pages 1022-1033, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:33:y:2023:i:3:p:29-44:id:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.