IDEAS home Printed from https://ideas.repec.org/a/wsi/wepxxx/v05y2019i02ns2382624x18500182.html
   My bibliography  Save this article

Metrics and Methods for Comparing Water Utility Rate Structures

Author

Listed:
  • Jordi Honey-Rosés

    (#x2020;1933 West Mall School of Community and Regional Planning, University of British Columbia, Vancouver BC V6T 1Z2, Canada)

  • Claudio Pareja

    (#x2021;Centro de Estudios de Desarrollo Regional y Políticas Públicas, Universidad de los Lagos, Osorno, Chile)

Abstract

Utility managers must design rate structures that meet multiple objectives: full cost recovery, fairness, economic efficiency, and resource conservation. To reach these multiple goals, the design of an optimal rate structure would ideally include detailed information on cost of service, demand elasticity, and preferences of the customer base within each utility. However this information is often unavailable, especially when analyzing utilities at regional or national scales. In this absence, the comparison or benchmarking of rate structures across utilities may reveal insights regarding the features, management, or performance of one utility relative to another. We review the metrics and methods available to water utility managers for comparing rate structures with publicly available information. By presenting the full range of metrics available to utility managers, we aim to facilitate the comparison of water rate structures, and ensure that the analysts can select the metric that best fits their needs. To illustrate how these metrics may help generate insight, we use them to compare the rate structures of five municipalities in Canada. Despite the contextual differences, we find that the rates tend to converge at a single metric, the Canadian standard of 25m3/month, suggesting that there is a “looking over the shoulder effect” in which managers are probably cognizant of the metrics used to compare them to others. We suggest that the design or re-design of rate structures can be informed by the metrics that compare rates across utilities, despite the limitations of working with only publicly available information.

Suggested Citation

  • Jordi Honey-Rosés & Claudio Pareja, 2019. "Metrics and Methods for Comparing Water Utility Rate Structures," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-31, April.
  • Handle: RePEc:wsi:wepxxx:v:05:y:2019:i:02:n:s2382624x18500182
    DOI: 10.1142/S2382624X18500182
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2382624X18500182
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2382624X18500182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francisco Silva Pinto & Rui Cunha Marques, 2016. "Tariff Suitability Framework for Water Supply Services," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 2037-2053, April.
    2. Jasper M. Dalhuisen & Raymond J. G. M. Florax & JHenri L. F. de Groot & Peter Nijkamp, 2003. "Price and Income Elasticities of Residential Water Demand: A Meta-Analysis," Land Economics, University of Wisconsin Press, vol. 79(2), pages 292-308.
    3. Steven Andrew Fenrick & Lullit Getachew, 2012. "Estimation of the effects of price and billing frequency on household water demand using a panel of Wisconsin municipalities," Applied Economics Letters, Taylor & Francis Journals, vol. 19(14), pages 1373-1380, September.
    4. Baerenklau, Kenneth A. & Schwabe, Kurt & Dinar, Ariel, 2014. "Do Increasing Block Rate Water Budgets Reduce Residential Water Demand? A Case Study in Southern California," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170019, Agricultural and Applied Economics Association.
    5. Wichman, Casey J., 2014. "Perceived price in residential water demand: Evidence from a natural experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 308-323.
    6. David Zetland & Christopher Gasson, 2013. "A global survey of urban water tariffs: are they sustainable, efficient and fair?," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 29(3), pages 327-342, September.
    7. Wichman, Casey J., 2017. "Information provision and consumer behavior: A natural experiment in billing frequency," Journal of Public Economics, Elsevier, vol. 152(C), pages 13-33.
    8. Steven Renzetti, 2009. "Wave of the Future: The Case for Smarter Water," C.D. Howe Institute Commentary, C.D. Howe Institute, issue 281, February.
    9. Kenneth A. Baerenklau & Kurt A. Schwabe & Ariel Dinar, 2014. "The Residential Water Demand Effect of Increasing Block Rate Water Budgets," Land Economics, University of Wisconsin Press, vol. 90(4), pages 683-699.
    10. Nataraj, Shanthi & Hanemann, W. Michael, 2011. "Does marginal price matter? A regression discontinuity approach to estimating water demand," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 198-212, March.
    11. R. G. Taylor & John R. McKean & Robert A. Young, 2004. "Alternate Price Specifications for Estimating Residential Water Demand with Fixed Fees," Land Economics, University of Wisconsin Press, vol. 80(3), pages 463-475.
    12. Steven Renzetti, 1999. "Municipal Water Supply and Sewage Treatment: Costs, Prices and Distortions," Canadian Journal of Economics, Canadian Economics Association, vol. 32(3), pages 688-704, May.
    13. Shin, Jeong-Shik, 1985. "Perception of Price When Price Information Is Costly: Evidence from Residential Electricity Demand," The Review of Economics and Statistics, MIT Press, vol. 67(4), pages 591-598, November.
    14. Amir Nafi & Jacques Tcheng & Patrick Beau, 2015. "Comprehensive Methodology for Overall Performance Assessment of Water Utilities," Post-Print hal-01410425, HAL.
    15. Sonia Ferdous Hoque & Dennis Wichelns, 2013. "State-of-the-art review: designing urban water tariffs to recover costs and promote wise use," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 29(3), pages 472-491, September.
    16. Amir Nafi & Jacques Tcheng & Patrick Beau, 2015. "Comprehensive Methodology for Overall Performance Assessment of Water Utilities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5429-5450, December.
    17. Donald E. Agthe & R. Bruce Billings, 1987. "Equity, Price Elasticity, and Household Income Under Increasing Block Rates for Water," American Journal of Economics and Sociology, Wiley Blackwell, vol. 46(3), pages 273-286, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Switzer, 2020. "The Context of Responsiveness: Resident Preferences, Water Scarcity, and Municipal Conservation Policy," Review of Policy Research, Policy Studies Organization, vol. 37(2), pages 260-279, March.
    2. Aina, Ifedotun Victor & Thiam, Djiby Racine & Dinar, Ariel, 2023. "Substitution of piped water and self-supplied groundwater: The case of residential water in South Africa," Utilities Policy, Elsevier, vol. 80(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang Lu & David Deller & Morten Hviid, 2019. "Price and Behavioural Signals to Encourage Household Water Conservation: Implications for the UK," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 475-491, January.
    2. Wichman, Casey J. & Taylor, Laura O. & von Haefen, Roger H., 2016. "Conservation policies: Who responds to price and who responds to prescription?," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 114-134.
    3. Liang Lu & David Deller & Morten Hviid, 2018. "Price and Behavioural Signals to Encourage Household Water Conservation in Temperate Climates," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2018-01, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    4. Fuente, David, 2019. "The design and evaluation of water tariffs: A systematic review," Utilities Policy, Elsevier, vol. 61(C).
    5. Henrique Monteiro, 2010. "Residential Water Demand in Portugal: checking for efficiency-based justifications for increasing block tariffs," Working Papers Series 1 ercwp0110, ISCTE-IUL, Business Research Unit (BRU-IUL).
    6. Milan Ščasný & Šarlota Smutná, 2021. "Estimation of price and income elasticity of residential water demand in the Czech Republic over three decades," Journal of Consumer Affairs, Wiley Blackwell, vol. 55(2), pages 580-608, June.
    7. María Ángeles García-Valiñas & Sara Suárez-Fernández, 2022. "Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics," Post-Print hal-04067487, HAL.
    8. Michael O'Donnell & Robert P. Berrens, 2018. "Understanding Falling Municipal Water Demand in a Small City Dependent on the Declining Ogallala Aquifer: Case Study of Clovis, New Mexico," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-40, October.
    9. Bruno, Ellen M. & Jessoe, Katrina, 2021. "Missing markets: Evidence on agricultural groundwater demand from volumetric pricing," Journal of Public Economics, Elsevier, vol. 196(C).
    10. Smith, Steven M., 2022. "The effects of individualized water rates on use and equity," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    11. Brandli Stitzel & Cynthia L. Rogers, 2022. "Residential Water Demand Under Increasing Block Rate Structure: Conservation Conundrum?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 203-218, January.
    12. Wang, Xiangrui & Lee, Jukwan & Yan, Jia & Thompson, Gary D., 2018. "Testing the behavior of rationally inattentive consumers in a residential water market," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 344-359.
    13. Daniel A. Brent, 2016. "Estimating Water Demand Elasticity at the Intensive and Extensive Margin," Departmental Working Papers 2016-06, Department of Economics, Louisiana State University.
    14. Lin, Boqiang & Chen, Xing, 2018. "Is the implementation of the Increasing Block Electricity Prices policy really effective?--- Evidence based on the analysis of synthetic control method," Energy, Elsevier, vol. 163(C), pages 734-750.
    15. Zhang, Zibin & Cai, Wenxin & Feng, Xiangzhao, 2017. "How do urban households in China respond to increasing block pricing in electricity? Evidence from a fuzzy regression discontinuity approach," Energy Policy, Elsevier, vol. 105(C), pages 161-172.
    16. Daniel A. Brent & Corey Lott & Michael Taylor & Joseph Cook & Kimberly Rollins & Shawn Stoddard, 2020. "What Causes Heterogeneous Responses to Social Comparison Messages for Water Conservation?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(3), pages 503-537, November.
    17. María Á. García-Valiñas & Roberto Martínez-Espiñeira & Marta Suárez-Varela Maciá, 2021. "Price and Consumption Misperception Profiles: The Role of Information in the Residential Water Sector," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(4), pages 821-857, December.
    18. Nathan DeMaagd & Michael J. Roberts, 2020. "Estimating water demand using price differences of wastewater services," Working Papers 2020-1, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    19. Mónica Maldonado-Devis & Vicent Almenar-Llongo, 2021. "A Panel Data Estimation of Domestic Water Demand with IRT Tariff Structure: The Case of the City of Valencia (Spain)," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    20. Wichman, Casey, 2024. "Efficiency, Equity, and Cost-Recovery Trade-Offs in Municipal Water Pricing," RFF Working Paper Series 24-18, Resources for the Future.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:wepxxx:v:05:y:2019:i:02:n:s2382624x18500182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/wep/wep.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.