IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v20y2017i02ns021902491750011x.html
   My bibliography  Save this article

Good Deal Bounds With Convex Constraints

Author

Listed:
  • TAKUJI ARAI

    (Department of Economics, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan)

Abstract

We investigate the structure of good deal bounds, which are subintervals of a no-arbitrage pricing bound, for financial market models with convex constraints as an extension of Arai & Fukasawa (2014). The upper and lower bounds of a good deal bound are naturally described by a convex risk measure. We call such a risk measure a good deal valuation; and study its properties. We also discuss superhedging cost and Fundamental Theorem of Asset Pricing for convex constrained markets.

Suggested Citation

  • Takuji Arai, 2017. "Good Deal Bounds With Convex Constraints," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-15, March.
  • Handle: RePEc:wsi:ijtafx:v:20:y:2017:i:02:n:s021902491750011x
    DOI: 10.1142/S021902491750011X
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S021902491750011X
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S021902491750011X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mingxin Xu, 2006. "Risk measure pricing and hedging in incomplete markets," Annals of Finance, Springer, vol. 2(1), pages 51-71, January.
    2. Igor V. Evstigneev & Klaus Schürger & Michael I. Taksar, 2004. "On The Fundamental Theorem Of Asset Pricing: Random Constraints And Bang‐Bang No‐Arbitrage Criteria," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 201-221, April.
    3. John H. Cochrane & Jesus Saa-Requejo, 2000. "Beyond Arbitrage: Good-Deal Asset Price Bounds in Incomplete Markets," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 79-119, February.
    4. Kreps, David M., 1981. "Arbitrage and equilibrium in economies with infinitely many commodities," Journal of Mathematical Economics, Elsevier, vol. 8(1), pages 15-35, March.
    5. Jeremy Staum, 2004. "Fundamental Theorems of Asset Pricing for Good Deal Bounds," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 141-161, April.
    6. Laurence Carassus & Huye^n Pham & Nizar Touzi, 2001. "No Arbitrage in Discrete Time Under Portfolio Constraints," Mathematical Finance, Wiley Blackwell, vol. 11(3), pages 315-329, July.
    7. Takuji Arai, 2016. "Good deal bounds with convex constraints: --- examples and proofs ---," Keio-IES Discussion Paper Series 2016-017, Institute for Economics Studies, Keio University.
    8. Stefan Jaschke & Uwe Küchler, 2001. "Coherent risk measures and good-deal bounds," Finance and Stochastics, Springer, vol. 5(2), pages 181-200.
    9. Patrick Cheridito & Tianhui Li, 2009. "Risk Measures On Orlicz Hearts," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 189-214, April.
    10. Kasper Larsen & Gordan v{Z}itkovi'c, 2011. "On utility maximization under convex portfolio constraints," Papers 1102.0346, arXiv.org, revised Feb 2013.
    11. Roux, Alet, 2011. "The fundamental theorem of asset pricing in the presence of bid-ask and interest rate spreads," Journal of Mathematical Economics, Elsevier, vol. 47(2), pages 159-163, March.
    12. Teemu Pennanen, 2011. "Arbitrage and deflators in illiquid markets," Finance and Stochastics, Springer, vol. 15(1), pages 57-83, January.
    13. Cuoco, Domenico, 1997. "Optimal Consumption and Equilibrium Prices with Portfolio Constraints and Stochastic Income," Journal of Economic Theory, Elsevier, vol. 72(1), pages 33-73, January.
    14. Dilip B. Madan & Alexander Cherny, 2010. "Markets As A Counterparty: An Introduction To Conic Finance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(08), pages 1149-1177.
    15. Jocelyne Bion-Nadal & Giulia Nunno, 2013. "Dynamic no-good-deal pricing measures and extension theorems for linear operators on L ∞," Finance and Stochastics, Springer, vol. 17(3), pages 587-613, July.
    16. Bion-Nadal, Jocelyne, 2009. "Bid-ask dynamic pricing in financial markets with transaction costs and liquidity risk," Journal of Mathematical Economics, Elsevier, vol. 45(11), pages 738-750, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Arduca & Cosimo Munari, 2020. "Fundamental theorem of asset pricing with acceptable risk in markets with frictions," Papers 2012.08351, arXiv.org, revised Apr 2022.
    2. Maria Arduca & Cosimo Munari, 2023. "Fundamental theorem of asset pricing with acceptable risk in markets with frictions," Finance and Stochastics, Springer, vol. 27(3), pages 831-862, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takuji Arai, 2016. "Good deal bounds with convex constraints: --- examples and proofs ---," Keio-IES Discussion Paper Series 2016-017, Institute for Economics Studies, Keio University.
    2. Takuji Arai, 2015. "Good deal bounds with convex constraints," Papers 1506.00396, arXiv.org.
    3. Takuji Arai & Masaaki Fukasawa, 2011. "Convex risk measures for good deal bounds," Papers 1108.1273, arXiv.org.
    4. Maria Arduca & Cosimo Munari, 2020. "Fundamental theorem of asset pricing with acceptable risk in markets with frictions," Papers 2012.08351, arXiv.org, revised Apr 2022.
    5. Maria Arduca & Cosimo Munari, 2023. "Fundamental theorem of asset pricing with acceptable risk in markets with frictions," Finance and Stochastics, Springer, vol. 27(3), pages 831-862, July.
    6. Leitner Johannes, 2005. "Optimal portfolios with expected loss constraints and shortfall risk optimal martingale measures," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 49-66, January.
    7. Tomasz R. Bielecki & Igor Cialenco & Ismail Iyigunler & Rodrigo Rodriguez, 2012. "Dynamic Conic Finance: Pricing and Hedging in Market Models with Transaction Costs via Dynamic Coherent Acceptability Indices," Papers 1205.4790, arXiv.org, revised Jun 2013.
    8. Patrick Cheridito & Michael Kupper & Ludovic Tangpi, 2016. "Duality formulas for robust pricing and hedging in discrete time," Papers 1602.06177, arXiv.org, revised Sep 2017.
    9. Maria Arduca & Cosimo Munari, 2021. "Risk measures beyond frictionless markets," Papers 2111.08294, arXiv.org.
    10. Jocelyne Bion-Nadal & Giulia Di Nunno, 2011. "Extension theorems for linear operators on $L_\infty$ and application to price systems," Papers 1102.5501, arXiv.org.
    11. Jocelyne Bion-Nadal & Giulia Nunno, 2013. "Dynamic no-good-deal pricing measures and extension theorems for linear operators on L ∞," Finance and Stochastics, Springer, vol. 17(3), pages 587-613, July.
    12. Hirbod Assa & Nikolay Gospodinov, 2018. "Market consistent valuations with financial imperfection," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 41(1), pages 65-90, May.
    13. Mustafa Pınar, 2011. "Gain–loss based convex risk limits in discrete-time trading," Computational Management Science, Springer, vol. 8(3), pages 299-321, August.
    14. Energy Sonono, Masimba & Phillip Mashele, Hopolang, 2016. "Estimation of bid-ask prices for options on LIBOR based instruments," Finance Research Letters, Elsevier, vol. 19(C), pages 33-41.
    15. Gianluca Cassese, 2017. "Asset pricing in an imperfect world," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 64(3), pages 539-570, October.
    16. Dirk Becherer & Klebert Kentia, 2017. "Hedging under generalized good-deal bounds and model uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 171-214, August.
    17. Tomasz R. Bielecki & Igor Cialenco & Tao Chen, 2014. "Dynamic Conic Finance via Backward Stochastic Difference Equations," Papers 1412.6459, arXiv.org, revised Dec 2014.
    18. Frank Bosserhoff & Mitja Stadje, 2019. "Robustness of Delta Hedging in a Jump-Diffusion Model," Papers 1910.08946, arXiv.org, revised Apr 2022.
    19. Alet Roux, 2007. "The fundamental theorem of asset pricing under proportional transaction costs," Papers 0710.2758, arXiv.org.
    20. Pal, Soumik, 2007. "Computing strategies for achieving acceptability: A Monte Carlo approach," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1587-1605, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:20:y:2017:i:02:n:s021902491750011x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.