IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v13y2010i01ns0219024910005681.html
   My bibliography  Save this article

Approximating Lévy Processes With A View To Option Pricing

Author

Listed:
  • JOHN CROSBY

    (Department of Economics, University of Glasgow, UK)

  • NOLWENN LE SAUX

    (Department of Mathematics, Imperial College London, UK)

  • ALEKSANDAR MIJATOVIĆ

    (Department of Mathematics, Imperial College London, UK)

Abstract

We examine how to approximate a Lévy process by a hyperexponential jump-diffusion (HEJD) process, composed of Brownian motion and of an arbitrary number of sums of compound Poisson processes with double exponentially distributed jumps. This approximation will facilitate the pricing of exotic options since HEJD processes have a degree of tractability that other Lévy processes do not have. The idea behind this approximation has been applied to option pricing by Asmussen et al. (2007) and Jeannin and Pistorius (2008). In this paper we introduce a more systematic methodology for constructing this approximation which allow us to compute the intensity rates, the mean jump sizes and the volatility of the approximating HEJD process (almost) analytically. Our methodology is very easy to implement. We compute vanilla option prices and barrier option prices using the approximating HEJD process and we compare our results to those obtained from other methodologies in the literature. We demonstrate that our methodology gives very accurate option prices and that these prices are more accurate than those obtained from existing methodologies for approximating Lévy processes by HEJD processes.

Suggested Citation

  • John Crosby & Nolwenn Le Saux & Aleksandar Mijatović, 2010. "Approximating Lévy Processes With A View To Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 63-91.
  • Handle: RePEc:wsi:ijtafx:v:13:y:2010:i:01:n:s0219024910005681
    DOI: 10.1142/S0219024910005681
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024910005681
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024910005681?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Svetlana I Boyarchenko & Sergei Z Levendorskii, 2002. "Non-Gaussian Merton-Black-Scholes Theory," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 4955, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.
    2. Walter Farkas & Ludovic Mathys & Nikola Vasiljevi'c, 2020. "Intra-Horizon Expected Shortfall and Risk Structure in Models with Jumps," Papers 2002.04675, arXiv.org, revised Jan 2021.
    3. Walter Farkas & Ludovic Mathys & Nikola Vasiljević, 2021. "Intra‐Horizon expected shortfall and risk structure in models with jumps," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 772-823, April.
    4. Oleg Kudryavtsev, 2024. "A simplified Wiener–Hopf factorization method for pricing double barrier options under Lévy processes," Computational Management Science, Springer, vol. 21(1), pages 1-30, June.
    5. Daniel Hackmann, 2017. "Analytic techniques for option pricing under a hyperexponential L\'{e}vy model," Papers 1705.05934, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    2. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    3. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    4. Mitya Boyarchenko & Marco De Innocentis & Sergei Levendorskiĭ, 2011. "Prices Of Barrier And First-Touch Digital Options In Lévy-Driven Models, Near Barrier," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(07), pages 1045-1090.
    5. Svetlana Boyarchenko & Sergei Levendorskii, 2004. "Real options and the universal bad news principle," Finance 0405011, University Library of Munich, Germany.
    6. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2019. "Gauge transformations in the dual space, and pricing and estimation in the long run in affine jump-diffusion models," Papers 1912.06948, arXiv.org, revised Dec 2019.
    7. M. Montero, 2008. "Renewal equations for option pricing," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(2), pages 295-306, September.
    8. Ole E. Barndorff-Nielsen & Neil Shephard, 2012. "Basics of Levy processes," Economics Papers 2012-W06, Economics Group, Nuffield College, University of Oxford.
    9. Liming Feng & Vadim Linetsky, 2009. "Computing exponential moments of the discrete maximum of a Lévy process and lookback options," Finance and Stochastics, Springer, vol. 13(4), pages 501-529, September.
    10. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2022. "Efficient inverse $Z$-transform and pricing barrier and lookback options with discrete monitoring," Papers 2207.02858, arXiv.org, revised Jul 2022.
    11. Andrey Itkin & Peter Carr, 2012. "Using Pseudo-Parabolic and Fractional Equations for Option Pricing in Jump Diffusion Models," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 63-104, June.
    12. Dan Pirjol & Lingjiong Zhu, 2023. "Asymptotics for Short Maturity Asian Options in Jump-Diffusion models with Local Volatility," Papers 2308.15672, arXiv.org, revised Feb 2024.
    13. Svetlana Boyarchenko & Sergei Levendorskii, 2023. "Efficient evaluation of joint pdf of a L\'evy process, its extremum, and hitting time of the extremum," Papers 2312.05222, arXiv.org.
    14. JosE Fajardo & Ernesto Mordecki, 2006. "Symmetry and duality in Levy markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 219-227.
    15. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2022. "Efficient evaluation of expectations of functions of a stable L\'evy process and its extremum," Papers 2209.12349, arXiv.org.
    16. Svetlana Boyarchenko & Sergei Levendorski&icaron;, 2007. "Practical Guide To Real Options In Discrete Time," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(1), pages 311-342, February.
    17. Liming Feng & Vadim Linetsky, 2008. "Pricing Discretely Monitored Barrier Options And Defaultable Bonds In Lévy Process Models: A Fast Hilbert Transform Approach," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 337-384, July.
    18. Xu Guo & Yutian Li, 2016. "Valuation of American options under the CGMY model," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1529-1539, October.
    19. Svetlana Boyarchenko & Sergei Levendorskii, 2023. "Simulation of a L\'evy process, its extremum, and hitting time of the extremum via characteristic functions," Papers 2312.03929, arXiv.org.
    20. Semere Habtemicael & Indranil SenGupta, 2016. "Pricing variance and volatility swaps for Barndorff-Nielsen and Shephard process driven financial markets," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-35, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:13:y:2010:i:01:n:s0219024910005681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.