IDEAS home Printed from https://ideas.repec.org/a/kap/revdev/v15y2012i1p81-97.html
   My bibliography  Save this article

Option pricing and hedging under a stochastic volatility Lévy process model

Author

Listed:
  • Young Kim
  • Frank Fabozzi
  • Zuodong Lin
  • Svetlozar Rachev

Abstract

No abstract is available for this item.

Suggested Citation

  • Young Kim & Frank Fabozzi & Zuodong Lin & Svetlozar Rachev, 2012. "Option pricing and hedging under a stochastic volatility Lévy process model," Review of Derivatives Research, Springer, vol. 15(1), pages 81-97, April.
  • Handle: RePEc:kap:revdev:v:15:y:2012:i:1:p:81-97
    DOI: 10.1007/s11147-011-9070-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11147-011-9070-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11147-011-9070-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Young Kim & Jeong Lee, 2007. "The relative entropy in CGMY processes and its applications to finance," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(2), pages 327-338, October.
    2. Shin Kim, Young & Rachev, Svetlozar T. & Leonardo Bianchi, Michele & Fabozzi, Frank J., 2010. "Tempered stable and tempered infinitely divisible GARCH models," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2096-2109, September.
    3. Christian Menn & Svetlozar Rachev, 2009. "Smoothly truncated stable distributions, GARCH-models, and option pricing," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 411-438, July.
    4. Robert J. Elliott & Leunglung Chan & Tak Kuen Siu, 2005. "Option pricing and Esscher transform under regime switching," Annals of Finance, Springer, vol. 1(4), pages 423-432, October.
    5. John Buffington & Robert J. Elliott, 2002. "American Options With Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(05), pages 497-514.
    6. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    9. Svetlana I Boyarchenko & Sergei Z Levendorskii, 2002. "Non-Gaussian Merton-Black-Scholes Theory," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 4955, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Young Shin Kim & Kum-Hwan Roh & Raphael Douady, 2022. "Tempered stable processes with time-varying exponential tails," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 541-561, March.
    2. Kim, Sung Ik, 2023. "A comparative study of firm value models: Default risk of corporate bonds," Finance Research Letters, Elsevier, vol. 56(C).
    3. Kim, Young Shin & Lee, Jaesung & Mittnik, Stefan & Park, Jiho, 2015. "Quanto option pricing in the presence of fat tails and asymmetric dependence," Journal of Econometrics, Elsevier, vol. 187(2), pages 512-520.
    4. Sung Ik Kim & Young Shin Kim, 2018. "Tempered stable structural model in pricing credit spread and credit default swap," Review of Derivatives Research, Springer, vol. 21(1), pages 119-148, April.
    5. Jacek Jakubowski & Mariusz Niewk{e}g{l}owski, 2013. "Risk-minimization and hedging claims on a jump-diffusion market model, Feynman-Kac Theorem and PIDE," Papers 1305.4132, arXiv.org, revised Jul 2013.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong-Mei Zhu & Jiejun Lu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "Option Pricing Under a Stochastic Interest Rate and Volatility Model with Hidden Markovian Regime-Switching," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 555-586, February.
    2. Young Shin Kim & Hyangju Kim & Jaehyung Choi, 2023. "Deep Calibration With Artificial Neural Network: A Performance Comparison on Option Pricing Models," Papers 2303.08760, arXiv.org.
    3. Pascal François & Geneviève Gauthier & Frédéric Godin, 2012. "Optimal Hedging when the Underlying Asset Follows a Regime-switching Markov Process," Cahiers de recherche 1234, CIRPEE.
    4. Patrick Assonken & G. S. Ladde, 2015. "Option Pricing With A Levy-Type Stochastic Dynamic Model For Stock Price Process Under Semi-Markovian Structural Perturbations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(08), pages 1-72, December.
    5. Young Shin Kim & Kum-Hwan Roh & Raphael Douady, 2022. "Tempered stable processes with time-varying exponential tails," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 541-561, March.
    6. Michele Leonardo Bianchi & Svetlozar T. Rachev & Frank J. Fabozzi, 2018. "Calibrating the Italian Smile with Time-Varying Volatility and Heavy-Tailed Models," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 339-378, March.
    7. Matthias R. Fengler & Alexander Melnikov, 2018. "GARCH option pricing models with Meixner innovations," Review of Derivatives Research, Springer, vol. 21(3), pages 277-305, October.
    8. Sharif Mozumder & Bakhtear Talukdar & M. Humayun Kabir & Bingxin Li, 2024. "Non-linear volatility with normal inverse Gaussian innovations: ad-hoc analytic option pricing," Review of Quantitative Finance and Accounting, Springer, vol. 62(1), pages 97-133, January.
    9. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    10. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    11. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    12. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    13. Siu, Tak Kuen & Yang, Hailiang & Lau, John W., 2008. "Pricing currency options under two-factor Markov-modulated stochastic volatility models," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 295-302, December.
    14. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    15. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    16. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2010. "Option pricing for GARCH-type models with generalized hyperbolic innovations," Post-Print halshs-00469529, HAL.
    17. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
    18. Frijns, Bart & Lehnert, Thorsten & Zwinkels, Remco C.J., 2010. "Behavioral heterogeneity in the option market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2273-2287, November.
    19. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    20. G. C. Lim & G. M. Martin & V. L. Martin, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404, March.

    More about this item

    Keywords

    Option pricing; Hedging; Stochastic volatility; Continuous Markov chain; Regime-switching model; Lévy process; Esscher transform; C6; G11; G12; G13;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:revdev:v:15:y:2012:i:1:p:81-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.