IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v12y2009i02ns0219024909005191.html
   My bibliography  Save this article

Pricing For Geometric Marked Point Processes Under Partial Information: Entropy Approach

Author

Listed:
  • CLAUDIA CECI

    (Dipartimento di Scienze, Facolta' di Economia Universita' di Chieti-Pescara, I-65127-Pescara, Italy)

  • ANNA GERARDI

    (Dipartimento di Ingegneria Elettrica, Facolta' di Ingegneria Universita' dell'Aquila, I-67100-L'Aquila, Italy)

Abstract

The problem of the arbitrage-free pricing of a European contingent claim B is considered in a general model for intraday stock price movements in the case of partial information. The dynamics of the risky asset price is described through a marked point process Y, whose local characteristics depend on some unobservable jump diffusion process X. The processes Y and X may have common jump times, which means that the trading activity may affect the law of X and could be also related to the presence of catastrophic events. Risk-neutral measures are characterized and in particular, the minimal entropy martingale measure is studied. The problem of pricing under restricted information is discussed, and the arbitrage-free price of the claim B w.r.t. the minimal entropy martingale measure is computed by using filtering techniques.

Suggested Citation

  • Claudia Ceci & Anna Gerardi, 2009. "Pricing For Geometric Marked Point Processes Under Partial Information: Entropy Approach," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(02), pages 179-207.
  • Handle: RePEc:wsi:ijtafx:v:12:y:2009:i:02:n:s0219024909005191
    DOI: 10.1142/S0219024909005191
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024909005191
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024909005191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuri M. Kabanov & Christophe Stricker, 2002. "On the optimal portfolio for the exponential utility maximization: remarks to the six‐author paper," Mathematical Finance, Wiley Blackwell, vol. 12(2), pages 125-134, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ceci, Claudia & Colaneri, Katia & Cretarola, Alessandra, 2014. "A benchmark approach to risk-minimization under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 129-146.
    2. Claudia Ceci & Anna Gerardi, 2011. "Utility indifference valuation for jump risky assets," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 34(2), pages 85-120, November.
    3. Mauricio Junca & Rafael Serrano, 2014. "Utility maximization in pure-jump models driven by marked point processes and nonlinear wealth dynamics," Papers 1411.1103, arXiv.org, revised Sep 2015.
    4. Claudia Ceci & Katia Colaneri & Alessandra Cretarola, 2013. "Local risk-minimization under restricted information to asset prices," Papers 1312.4385, arXiv.org, revised Nov 2014.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Westray, Nicholas & Zheng, Harry, 2009. "Constrained nonsmooth utility maximization without quadratic inf convolution," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1561-1579, May.
    2. Kim Weston, 2016. "Stability of utility maximization in nonequivalent markets," Finance and Stochastics, Springer, vol. 20(2), pages 511-541, April.
    3. Kim Weston, 2014. "Stability of Utility Maximization in Nonequivalent Markets," Papers 1410.0915, arXiv.org, revised Jun 2015.
    4. Bruno Bouchard & Johannes Muhle-Karbe, 2018. "Simple Bounds for Transaction Costs," Working Papers hal-01711371, HAL.
    5. Michail Anthropelos & Nikolaos E. Frangos & Stylianos Z. Xanthopoulos & Athanasios N. Yannacopoulos, 2008. "On contingent claims pricing in incomplete markets: A risk sharing approach," Papers 0809.4781, arXiv.org, revised Feb 2012.
    6. Tsukasa Fujiwara, 2004. "From the Minimal Entropy Martingale Measures to the Optimal Strategies for the Exponential Utility Maximization: the Case of Geometric Lévy Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(4), pages 367-391, December.
    7. Martin Herdegen & Johannes Muhle-Karbe, 2018. "Stability of Radner equilibria with respect to small frictions," Finance and Stochastics, Springer, vol. 22(2), pages 443-502, April.
    8. Keita Owari, 2011. "A Note on Utility Maximization with Unbounded Random Endowment," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 18(1), pages 89-103, March.
    9. Kallsen Jan & Rheinländer Thorsten, 2011. "Asymptotic utility-based pricing and hedging for exponential utility," Statistics & Risk Modeling, De Gruyter, vol. 28(1), pages 17-36, March.
    10. Kohlmann, Michael & Niethammer, Christina R., 2007. "On convergence to the exponential utility problem," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1813-1834, December.
    11. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    12. Mahan Tahvildari, 2021. "Forward indifference valuation and hedging of basis risk under partial information," Papers 2101.00251, arXiv.org.
    13. B. Bouchard & N. Touzi & A. Zeghal, 2004. "Dual formulation of the utility maximization problem: the case of nonsmooth utility," Papers math/0405290, arXiv.org.
    14. Hao Xing, 2012. "Stability of the exponential utility maximization problem with respect to preferences," Papers 1205.6160, arXiv.org, revised Sep 2013.
    15. Paolo Guasoni & Johannes Muhle-Karbe, 2011. "Long Horizons, High Risk Aversion, and Endogeneous Spreads," Papers 1110.1214, arXiv.org, revised Jul 2012.
    16. Xing, Hao, 2017. "Stability of the exponential utility maximization problem with respect to preferences," LSE Research Online Documents on Economics 57213, London School of Economics and Political Science, LSE Library.
    17. Michail Anthropelos & Gordan Zitkovic, 2008. "On Agents' Agreement and Partial-Equilibrium Pricing in Incomplete Markets," Papers 0803.2198, arXiv.org.
    18. Peter Bank & Yan Dolinsky & Mikl'os R'asonyi, 2021. "What if we knew what the future brings? Optimal investment for a frontrunner with price impact," Papers 2108.04291, arXiv.org, revised May 2022.
    19. Johannes Gerer & Gregor Dorfleitner, 2016. "A Note On Utility Indifference Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(06), pages 1-17, September.
    20. Bouchard, Bruno & Muhle-Karbe, Johannes, 2022. "Simple bounds for utility maximization with small transaction costs," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 98-113.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:12:y:2009:i:02:n:s0219024909005191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.