IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v08y2005i08ns0219024905003384.html
   My bibliography  Save this article

Analytic Backward Induction Of Option Cash Flows: A New Application Paradigm For The Markovian Interest Rate Models

Author

Listed:
  • JUNWU GAN

    (Applied Financial Technology, 160 Sansome Street, Suite 1200, San Francisco, CA 94104-3718, USA)

Abstract

This paper develops a unified formulation and a new computational methodology for the entire class of the multi-factor Markovian interest rate models. The early exercise premium representation for general American options is derived for all Markovian models. The option cash flow functions are decomposed into fast and slowly varying components. The fast varying components have the same expression for all options within a model. They are calculated analytically. Only the slowly varying components are option specific. Their backward induction for a finite time interval is carried out from Taylor expansion expressions. The small coefficient of the expansion is the product of the variance and the width of the time interval. The option price is calculated by dividing its time horizon into smaller intervals and numerically iterating the Taylor expansion expressions of one time interval. Other new results include: (i) The derivation of a new "almost" Markovian LIBOR market model and its related Markovian short-rate model; (ii) the universal form of the critical boundary near the maturity for the American options in the one-factor Markovian models; and (iii) approximate analytic expressions for the entire critical boundary of the American put stock option. The put price calculated from the boundary has relative precision better than 10-5.

Suggested Citation

  • Junwu Gan, 2005. "Analytic Backward Induction Of Option Cash Flows: A New Application Paradigm For The Markovian Interest Rate Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(08), pages 1019-1057.
  • Handle: RePEc:wsi:ijtafx:v:08:y:2005:i:08:n:s0219024905003384
    DOI: 10.1142/S0219024905003384
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024905003384
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024905003384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    2. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26, March.
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    4. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    5. Geske, Robert & Johnson, Herb E, 1984. "The American Put Option Valued Analytically," Journal of Finance, American Finance Association, vol. 39(5), pages 1511-1524, December.
    6. Andrew Carverhill, 1994. "When Is The Short Rate Markovian?," Mathematical Finance, Wiley Blackwell, vol. 4(4), pages 305-312, October.
    7. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    8. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junwu Gan, 2014. "An almost Markovian LIBOR market model calibrated to caps and swaptions," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1937-1959, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    2. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.
    3. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, May.
    4. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    5. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    6. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    7. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    8. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    9. repec:uts:finphd:40 is not listed on IDEAS
    10. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    11. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, December.
    12. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    13. Ho, T. S. & Stapleton, Richard C. & Subrahmanyam, Marti G., 1997. "The valuation of American options on bonds1," Journal of Banking & Finance, Elsevier, vol. 21(11-12), pages 1487-1513, December.
    14. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    15. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005, January-A.
    16. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6, July-Dece.
    17. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    18. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    19. Calum G. Turvey, 2006. "Managing food industry business and financial risks with commodity-linked credit instruments," Agribusiness, John Wiley & Sons, Ltd., vol. 22(4), pages 523-545.
    20. repec:dau:papers:123456789/5374 is not listed on IDEAS
    21. Carl Chiarella & Oh-Kang Kwon, 2000. "A Class of Heath-Jarrow-Morton Term Structure Models with Stochastic Volatility," Research Paper Series 34, Quantitative Finance Research Centre, University of Technology, Sydney.
    22. Ingo Beyna, 2013. "Interest Rate Derivatives," Lecture Notes in Economics and Mathematical Systems, Springer, edition 127, number 978-3-642-34925-6, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:08:y:2005:i:08:n:s0219024905003384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.