IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v07y2004i05ns0219024904002591.html
   My bibliography  Save this article

A Two-Regime, Stochastic-Volatility Extension Of The Libor Market Model

Author

Listed:
  • RICCARDO REBONATO

    (Royal Bank of Scotland Quantitative Research Centre (QUARC), 135 Bishopsgate, EC2M 3UR, London, UK;
    Oxford University — OCIAM, UK)

  • DHERMINDER KAINTH

    (Royal Bank of Scotland Quantitative Research Centre (QUARC), 135 Bishopsgate, EC2M 3UR, London, UK)

Abstract

We propose a two-regime stochastic volatility extension of the LIBOR market model that preserves the positive features of the recently introduced (Joshi and Rebonato 2001) stochastic-volatility LIBOR market model (ease of calibration to caplets and swaptions, efficient pricing of complex derivatives, etc.) and overcomes most of its shortcomings. We show the improvements by analyzing empirically and theoretically the real and the model-produced change sin swaption implied volatility.

Suggested Citation

  • Riccardo Rebonato & Dherminder Kainth, 2004. "A Two-Regime, Stochastic-Volatility Extension Of The Libor Market Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 7(05), pages 555-575.
  • Handle: RePEc:wsi:ijtafx:v:07:y:2004:i:05:n:s0219024904002591
    DOI: 10.1142/S0219024904002591
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024904002591
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024904002591?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicolas Merener & Paul Glasserman, 2003. "Numerical solution of jump-diffusion LIBOR market models," Finance and Stochastics, Springer, vol. 7(1), pages 1-27.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riccardo Rebonato & Valerio Gaspari, 2006. "Analysis of drawdowns and drawups in the US$ interest-rate market," Quantitative Finance, Taylor & Francis Journals, vol. 6(4), pages 297-326.
    2. Riccardo Rebonato, 2006. "Forward-Rate Volatilities And The Swaption Matrix: Why Neither Time-Homogeneity Nor Time-Dependence Are Enough," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(05), pages 705-746.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. Giesecke & H. Kakavand & M. Mousavi, 2011. "Exact Simulation of Point Processes with Stochastic Intensities," Operations Research, INFORMS, vol. 59(5), pages 1233-1245, October.
    2. Antonis Papapantoleon & David Skovmand, 2010. "Numerical methods for the L\'evy LIBOR model," Papers 1006.3340, arXiv.org.
    3. Antonis Papapantoleon & John Schoenmakers & David Skovmand, 2011. "Efficient and accurate log-Lévi approximations to Lévi driven LIBOR models," CREATES Research Papers 2011-22, Department of Economics and Business Economics, Aarhus University.
    4. Antonis Papapantoleon & Maria Siopacha, 2009. "Strong Taylor approximation of stochastic differential equations and application to the L\'evy LIBOR model," Papers 0906.5581, arXiv.org, revised Oct 2010.
    5. Nicola Bruti-Liberati & Eckhard Platen, 2005. "On the Strong Approximation of Pure Jump Processes," Research Paper Series 164, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. Christian Fries & Joerg Kampen, 2010. "Global existence, regularity and a probabilistic scheme for a class of ultraparabolic Cauchy problems," Papers 1002.5031, arXiv.org, revised Oct 2012.
    7. Liming Feng & Vadim Linetsky, 2008. "Pricing Options in Jump-Diffusion Models: An Extrapolation Approach," Operations Research, INFORMS, vol. 56(2), pages 304-325, April.
    8. Joerg Kampen & Anastasia Kolodko & John Schoenmakers, 2008. "Monte Carlo Greeks for financial products via approximative transition densities," Papers 0807.1213, arXiv.org.
    9. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    10. Michael S. Johannes & Nicholas G. Polson & Jonathan R. Stroud, 2009. "Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2559-2599, July.
    11. Antonis Papapantoleon & John Schoenmakers & David Skovmand, 2011. "Efficient and accurate log-L\'evy approximations to L\'evy driven LIBOR models," Papers 1106.0866, arXiv.org, revised Jan 2012.
    12. Kay Giesecke & Baeho Kim & Shilin Zhu, 2011. "Monte Carlo Algorithms for Default Timing Problems," Management Science, INFORMS, vol. 57(12), pages 2115-2129, December.
    13. Yuan Xia, 2011. "Multilevel Monte Carlo method for jump-diffusion SDEs," Papers 1106.4730, arXiv.org.
    14. Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410, July.
    15. Kay Giesecke & Baeho Kim, 2011. "Risk Analysis of Collateralized Debt Obligations," Operations Research, INFORMS, vol. 59(1), pages 32-49, February.
    16. Lixin Wu & Fan Zhang, 2008. "Fast swaption pricing under the market model with a square-root volatility process," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 163-180.
    17. Raoul Pietersz & Antoon Pelsser & Marcel van Regenmortel, 2005. "Fast drift approximated pricing in the BGM model," Finance 0502005, University Library of Munich, Germany.
    18. Jos'e E. Figueroa-L'opez & Yankeng Luo, 2015. "Small-time expansions for state-dependent local jump-diffusion models with infinite jump activity," Papers 1505.04459, arXiv.org, revised Dec 2015.
    19. Antonis Papapantoleon & David Skovmand, 2010. "Picard Approximation of Stochastic Differential Equations and Application to Libor Models," CREATES Research Papers 2010-40, Department of Economics and Business Economics, Aarhus University.
    20. Antonis Papapantoleon & David Skovmand, 2010. "Picard approximation of stochastic differential equations and application to LIBOR models," Papers 1007.3362, arXiv.org, revised Jul 2011.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:07:y:2004:i:05:n:s0219024904002591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.