IDEAS home Printed from https://ideas.repec.org/a/wsi/ijmpcx/v26y2015i09ns0129183115500965.html
   My bibliography  Save this article

Community detection in bipartite networks using weighted symmetric binary matrix factorization

Author

Listed:
  • Zhong-Yuan Zhang

    (School of Statistics and Mathematics, Central University of Finance and Economics, Beijing, P. R. China)

  • Yong-Yeol Ahn

    (School of Informatics and Computing, Indiana University Bloomington, IN, USA)

Abstract

In this paper, we propose weighted symmetric binary matrix factorization (wSBMF) framework to detect overlapping communities in bipartite networks, which describes the relationships between two types of nodes. Our method improves performance by recognizing the distinction between two types of missing edges — ones among the nodes in each node type and the others between two node types. Our method can also explicitly assign community membership and distinguish outliers from overlapping nodes, as well as incorporating existing knowledge on the network. We propose a generalized partition density for bipartite networks as a quality function, which identifies the most appropriate number of communities. The experimental results on both synthetic and real-world networks demonstrate the effectiveness of our method.

Suggested Citation

  • Zhong-Yuan Zhang & Yong-Yeol Ahn, 2015. "Community detection in bipartite networks using weighted symmetric binary matrix factorization," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(09), pages 1-14.
  • Handle: RePEc:wsi:ijmpcx:v:26:y:2015:i:09:n:s0129183115500965
    DOI: 10.1142/S0129183115500965
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0129183115500965
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0129183115500965?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. You, Tao & Cheng, Hui-Min & Ning, Yi-Zi & Shia, Ben-Chang & Zhang, Zhong-Yuan, 2016. "Community detection in complex networks using density-based clustering algorithm and manifold learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 221-230.
    2. Jin, Hong & Yu, Wei & Li, ShiJun, 2019. "Graph regularized nonnegative matrix tri-factorization for overlapping community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 376-387.
    3. Zhang, Zhong-Yuan & Gai, Yujie & Wang, Yu-Fei & Cheng, Hui-Min & Liu, Xin, 2018. "On equivalence of likelihood maximization of stochastic block model and constrained nonnegative matrix factorization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 687-697.
    4. Yubo Peng & Bofeng Zhang & Furong Chang, 2021. "Overlapping Community Detection of Bipartite Networks Based on a Novel Community Density," Future Internet, MDPI, vol. 13(4), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijmpcx:v:26:y:2015:i:09:n:s0129183115500965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijmpc/ijmpc.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.