IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v515y2019icp376-387.html
   My bibliography  Save this article

Graph regularized nonnegative matrix tri-factorization for overlapping community detection

Author

Listed:
  • Jin, Hong
  • Yu, Wei
  • Li, ShiJun

Abstract

Non-negative Matrix Factorization technique has attracted many interests in overlapping community detection due to its performance and interpretability. However, when adapted to discover community structure the intrinsic geometric information of the network graph is seldom considered. In view of this, we proposed a novel NMF based algorithm called Graph regularized nonnegative matrix tri-factorization (GNMTF) model, which incorporates the intrinsic geometrical properties of the network graph by manifold regularization. Moreover, by using three factor matrices we can not only explicitly obtain the community membership of each node but also learn the interaction among different communities. The experimental results on two well-known real world networks and a benchmark network demonstrate the effectiveness of the algorithm over the representative non-negative matrix factorization based method.

Suggested Citation

  • Jin, Hong & Yu, Wei & Li, ShiJun, 2019. "Graph regularized nonnegative matrix tri-factorization for overlapping community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 376-387.
  • Handle: RePEc:eee:phsmap:v:515:y:2019:i:c:p:376-387
    DOI: 10.1016/j.physa.2018.09.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118312251
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhong-Yuan Zhang & Yong-Yeol Ahn, 2015. "Community detection in bipartite networks using weighted symmetric binary matrix factorization," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(09), pages 1-14.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhong-Yuan & Gai, Yujie & Wang, Yu-Fei & Cheng, Hui-Min & Liu, Xin, 2018. "On equivalence of likelihood maximization of stochastic block model and constrained nonnegative matrix factorization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 687-697.
    2. You, Tao & Cheng, Hui-Min & Ning, Yi-Zi & Shia, Ben-Chang & Zhang, Zhong-Yuan, 2016. "Community detection in complex networks using density-based clustering algorithm and manifold learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 221-230.
    3. Yubo Peng & Bofeng Zhang & Furong Chang, 2021. "Overlapping Community Detection of Bipartite Networks Based on a Novel Community Density," Future Internet, MDPI, vol. 13(4), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:515:y:2019:i:c:p:376-387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.