IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v13y2021i4p89-d527194.html
   My bibliography  Save this article

Overlapping Community Detection of Bipartite Networks Based on a Novel Community Density

Author

Listed:
  • Yubo Peng

    (School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China)

  • Bofeng Zhang

    (School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China)

  • Furong Chang

    (School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China)

Abstract

Community detection plays an essential role in understanding network topology and mining underlying information. A bipartite network is a complex network with more important authenticity and applicability than a one-mode network in the real world. There are many communities in the network that present natural overlapping structures in the real world. However, most of the research focuses on detecting non-overlapping community structures in the bipartite network, and the resolution of the existing evaluation function for the community structure’s merits are limited. So, we propose a novel function for community detection and evaluation of the bipartite network, called community density D . And based on community density, a bipartite network community detection algorithm DSNE (Density Sub-community Node-pair Extraction) is proposed, which is effective for overlapping community detection from a micro point of view. The experiments based on artificially-generated networks and real-world networks show that the DSNE algorithm is superior to some existing excellent algorithms; in comparison, the community density (D) is better than the bipartite network’s modularity.

Suggested Citation

  • Yubo Peng & Bofeng Zhang & Furong Chang, 2021. "Overlapping Community Detection of Bipartite Networks Based on a Novel Community Density," Future Internet, MDPI, vol. 13(4), pages 1-21, March.
  • Handle: RePEc:gam:jftint:v:13:y:2021:i:4:p:89-:d:527194
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/13/4/89/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/13/4/89/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xingyuan & Qin, Xiaomeng, 2016. "Asymmetric intimacy and algorithm for detecting communities in bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 569-578.
    2. Jose C Nacher & Jean-Marc Schwartz, 2012. "Modularity in Protein Complex and Drug Interactions Reveals New Polypharmacological Properties," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-13, January.
    3. Sun, Hong-liang & Ch’ng, Eugene & Yong, Xi & Garibaldi, Jonathan M. & See, Simon & Chen, Duan-bing, 2018. "A fast community detection method in bipartite networks by distance dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 108-120.
    4. H. Jeong & S. P. Mason & A.-L. Barabási & Z. N. Oltvai, 2001. "Lethality and centrality in protein networks," Nature, Nature, vol. 411(6833), pages 41-42, May.
    5. Zhou, Cangqi & Feng, Liang & Zhao, Qianchuan, 2018. "A novel community detection method in bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1679-1693.
    6. Zhong-Yuan Zhang & Yong-Yeol Ahn, 2015. "Community detection in bipartite networks using weighted symmetric binary matrix factorization," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(09), pages 1-14.
    7. Feng, Liang & Zhou, Cangqi & Zhao, Qianchuan, 2019. "A spectral method to find communities in bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 424-437.
    8. Cui, Yaozu & Wang, Xingyuan, 2014. "Uncovering overlapping community structures by the key bi-community and intimate degree in bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 7-14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Song & Zhiwen Zheng & Yunmei Shi & Bo Wang, 2023. "GLOD: The Local Greedy Expansion Method for Overlapping Community Detection in Dynamic Provenance Networks," Mathematics, MDPI, vol. 11(15), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Hong-liang & Ch’ng, Eugene & Yong, Xi & Garibaldi, Jonathan M. & See, Simon & Chen, Duan-bing, 2018. "A fast community detection method in bipartite networks by distance dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 108-120.
    2. Nan, Dong-Yang & Yu, Wei & Liu, Xiao & Zhang, Yun-Peng & Dai, Wei-Di, 2018. "A framework of community detection based on individual labels in attribute networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 523-536.
    3. Wang, Xingyuan & Qin, Xiaomeng, 2016. "Asymmetric intimacy and algorithm for detecting communities in bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 569-578.
    4. Yang, Xin & Wen, Shigang & Zhao, Xian & Huang, Chuangxia, 2020. "Systemic importance of financial institutions: A complex network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Wilhelm, Thomas & Hollunder, Jens, 2007. "Information theoretic description of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 385-396.
    6. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    7. Chung-Yen Yu & Yung-Ting Chuang & Hsi-Peng Kuan, 2017. "Understanding Faculty Collaboration and Productivity: A Case Study," Asian Social Science, Canadian Center of Science and Education, vol. 13(3), pages 1-1, March.
    8. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    9. Jordán, Ferenc, 2022. "The network perspective: Vertical connections linking organizational levels," Ecological Modelling, Elsevier, vol. 473(C).
    10. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    11. Nadadoor Venkat R. & Ben-Zvi Amos & Shah Sirish L., 2011. "Inferring Gene Networks using Robust Statistical Techniques," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-30, May.
    12. Maihami, Vafa & Yaghmaee, Farzin, 2018. "Automatic image annotation using community detection in neighbor images," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 123-132.
    13. Zhang, Hong, 2015. "Moderate tolerance promotes tag-mediated cooperation in spatial Prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 52-61.
    14. Wang, Tao & Wang, Hongjue & Wang, Xiaoxia, 2015. "A novel cosine distance for detecting communities in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 21-35.
    15. Mustafa C. Camur & Thomas Sharkey & Chrysafis Vogiatzis, 2022. "The Star Degree Centrality Problem: A Decomposition Approach," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 93-112, January.
    16. Ramesh Ummanni & Frederike Mundt & Heike Pospisil & Simone Venz & Christian Scharf & Christine Barett & Maria Fälth & Jens Köllermann & Reinhard Walther & Thorsten Schlomm & Guido Sauter & Carsten Bok, 2011. "Identification of Clinically Relevant Protein Targets in Prostate Cancer with 2D-DIGE Coupled Mass Spectrometry and Systems Biology Network Platform," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-14, February.
    17. Peter Langfelder & Paul S Mischel & Steve Horvath, 2013. "When Is Hub Gene Selection Better than Standard Meta-Analysis?," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    18. Sun, Hong-liang & Chen, Duan-bing & He, Jia-lin & Ch’ng, Eugene, 2019. "A voting approach to uncover multiple influential spreaders on weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 303-312.
    19. Zhang, Zhong-Yuan & Gai, Yujie & Wang, Yu-Fei & Cheng, Hui-Min & Liu, Xin, 2018. "On equivalence of likelihood maximization of stochastic block model and constrained nonnegative matrix factorization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 687-697.
    20. Kim, Jongkwang & Wilhelm, Thomas, 2008. "What is a complex graph?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2637-2652.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:13:y:2021:i:4:p:89-:d:527194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.