IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v49y2015i6p2435-2458.html
   My bibliography  Save this article

An architecture of agent-based multi-layer interactive e-learning and e-testing platform

Author

Listed:
  • Muhammad Arif
  • Manzoor Illahi
  • Ahmad Karim
  • Shahaboddin Shamshirband
  • Khubaib Alam
  • Shahid Farid
  • Salman Iqbal
  • Zolkepli Buang
  • Valentina Balas

Abstract

E-learning is the synthesis of multimedia and social media platforms powered by Internet and mobile technologies. Great popularity of e-learning is encouraging governments and educational institutions to adopt and develop e-learning cultures in societies in general and universities in particular. In traditional e-learning systems, all components (agents and services) are tightly coupled into a single system. In this study, we propose a new architecture for e-learning with two subsystems, namely, e-learning and e-testing. The motivation of the research is to improve the effectiveness of the learning process by extracting relevant features for elastic learning and testing process. We employ a multi-agent system because it contains five-layer architecture, including agents at various levels. We also propose a novel method for updating content through question and answer between e-learners and intelligent agents. To achieve optimization, we design a system that applies various technologies, which guarantee various dynamic features for e-learning systems, such as intelligence, distributed nature, adaptive attitude, interaction, accessibility, and security. Agent assisted e- learning enable the users to collect the quantifiable and sensible material; examine, and distribute customized knowledge from multiple e-learning sources. Intelligent agents, being program helper or assistants, are deployed at different levels of abstraction in this architecture to manage information overload and create environment for learners. Moreover, this proposed system is designed by keeping in view several characteristics specific to e-learning system such as interaction, personalization, adaptation, intelligence, interoperability, accessibility and security. The architecture is designed to support instructional design, to retrieve relevant learning materials, to process and analyses data to enable meaningful e-learning recommendations for instructors and learners by considering all issues that existing e-learning architectures don’t address. Most of the existing e-learning architectures don’t consider all the features in a single system so there is a need for a generic architecture that should support all the features to make the e-learning system more efficient. The outcome of this approach is to provide flexible and lightweight systems for e-learning environments. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Muhammad Arif & Manzoor Illahi & Ahmad Karim & Shahaboddin Shamshirband & Khubaib Alam & Shahid Farid & Salman Iqbal & Zolkepli Buang & Valentina Balas, 2015. "An architecture of agent-based multi-layer interactive e-learning and e-testing platform," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(6), pages 2435-2458, November.
  • Handle: RePEc:spr:qualqt:v:49:y:2015:i:6:p:2435-2458
    DOI: 10.1007/s11135-014-0121-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11135-014-0121-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11135-014-0121-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jia-Lang Seng & Sally Lin, 2004. "A mobility and knowledge-centric e-learning application design method," International Journal of Innovation and Learning, Inderscience Enterprises Ltd, vol. 1(3), pages 293-311.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung-Ho Su, 2017. "A Novel Hybrid Learning Achievement Prediction Model: A Case Study in Gamification Education Applications (APPs)," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(02), pages 515-543, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:49:y:2015:i:6:p:2435-2458. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.