IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v351y2019icp204-218.html
   My bibliography  Save this article

An instance-based learning recommendation algorithm of imbalance handling methods

Author

Listed:
  • Zhang, Xueying
  • Li, Ruixian
  • Zhang, Bo
  • Yang, Yunxiang
  • Guo, Jing
  • Ji, Xiang

Abstract

Imbalance learning is a typical problem in domain of machine learning and data mining. Aiming to solve this problem, researchers have proposed lots of the state-of-art techniques, such as Over Sampling, Under Sampling, SMOTE, Cost sensitive, and so on. However, the most appropriate methods on different learning problems are diverse. Given an imbalance learning problem, we proposed an Instance-based Learning (IBL) recommendation algorithm to present the most appropriate imbalance handling method for it. First, the meta knowledge database is created by the binary relation 〈data characteristic measures-the rank of all candidate imbalance handling methods〉 of each data set. Afterwards, when a new data set comes, its characteristics will be extracted and compared with the example in the knowledge database, where the instance-based k-nearest neighbors algorithm is applied to identify the rank of all candidate imbalance handling methods for the new dataset. Finally, the most appropriate imbalance handling method will be derived through combining the recommended rank and individual bias. The experimental results on 80 public binary imbalance datasets confirm that the proposed recommendation algorithm can effectively present the most appropriate imbalance handling method for a given imbalance learning problem, with the hit rate of recommendation up to 95%.

Suggested Citation

  • Zhang, Xueying & Li, Ruixian & Zhang, Bo & Yang, Yunxiang & Guo, Jing & Ji, Xiang, 2019. "An instance-based learning recommendation algorithm of imbalance handling methods," Applied Mathematics and Computation, Elsevier, vol. 351(C), pages 204-218.
  • Handle: RePEc:eee:apmaco:v:351:y:2019:i:c:p:204-218
    DOI: 10.1016/j.amc.2018.12.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318310671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.12.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David H. Wolpert & William G. Macready, 1995. "No Free Lunch Theorems for Search," Working Papers 95-02-010, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jui-Sheng Chou & Dinh-Nhat Truong & Chih-Fong Tsai, 2021. "Solving Regression Problems with Intelligent Machine Learner for Engineering Informatics," Mathematics, MDPI, vol. 9(6), pages 1-25, March.
    2. Sevvandi Kandanaarachchi & Mario A Munoz & Rob J Hyndman & Kate Smith-Miles, 2018. "On normalization and algorithm selection for unsupervised outlier detection," Monash Econometrics and Business Statistics Working Papers 16/18, Monash University, Department of Econometrics and Business Statistics.
    3. Kamran Zolfi, 2023. "Gold rush optimizer: A new population-based metaheuristic algorithm," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(1), pages 113-150.
    4. Y.C. Ho & D.L. Pepyne, 2002. "Simple Explanation of the No-Free-Lunch Theorem and Its Implications," Journal of Optimization Theory and Applications, Springer, vol. 115(3), pages 549-570, December.
    5. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    6. Abdel-Rahman Hedar & Emad Mabrouk & Masao Fukushima, 2011. "Tabu Programming: A New Problem Solver Through Adaptive Memory Programming Over Tree Data Structures," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 373-406.
    7. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2024. "Multi Criteria Frameworks Using New Meta-Heuristic Optimization Techniques for Solving Multi-Objective Optimal Power Flow Problems," Energies, MDPI, vol. 17(9), pages 1-39, May.
    8. Muangkote, Nipotepat & Sunat, Khamron & Chiewchanwattana, Sirapat & Kaiwinit, Sirilak, 2019. "An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models," Renewable Energy, Elsevier, vol. 134(C), pages 1129-1147.
    9. Sharifian, Yeganeh & Abdi, Hamdi, 2023. "Solving multi-area economic dispatch problem using hybrid exchange market algorithm with grasshopper optimization algorithm," Energy, Elsevier, vol. 267(C).
    10. Díaz–Pachón, Daniel Andrés & Sáenz, Juan Pablo & Rao, J. Sunil, 2020. "Hypothesis testing with active information," Statistics & Probability Letters, Elsevier, vol. 161(C).
    11. Yi Peng & Gang Kou & Guoxun Wang & Honggang Wang & Franz I. S. Ko, 2009. "Empirical Evaluation Of Classifiers For Software Risk Management," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 749-767.
    12. Peter F. Stadler & Gunjter P. Wagner, 1996. "The Algebraic Theory of Recombination Spaces," Working Papers 96-07-046, Santa Fe Institute.
    13. Chen, Xu & Lu, Qi & Yuan, Ye & He, Kaixun, 2024. "A novel derivative search political optimization algorithm for multi-area economic dispatch incorporating renewable energy," Energy, Elsevier, vol. 300(C).
    14. L. Ingber, 1996. "Adaptive simulated annealing (ASA): Lessons learned," Lester Ingber Papers 96as, Lester Ingber.
    15. Christopher Ifeanyi Eke & Azah Anir Norman & Liyana Shuib, 2021. "Multi-feature fusion framework for sarcasm identification on twitter data: A machine learning based approach," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-32, June.
    16. Aktaş, Dilay & Lokman, Banu & İnkaya, Tülin & Dejaegere, Gilles, 2024. "Cluster ensemble selection and consensus clustering: A multi-objective optimization approach," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1065-1077.
    17. William G. Macready & David H. Wolpert, 1995. "What Makes an Optimization Problem Hard?," Working Papers 95-05-046, Santa Fe Institute.
    18. Galioto, Francesco & Battilani, Adriano, 2021. "Agro-economic simulation for day by day irrigation scheduling optimisation," Agricultural Water Management, Elsevier, vol. 248(C).
    19. Agarwal, Anurag & Colak, Selcuk & Eryarsoy, Enes, 2006. "Improvement heuristic for the flow-shop scheduling problem: An adaptive-learning approach," European Journal of Operational Research, Elsevier, vol. 169(3), pages 801-815, March.
    20. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "Single and Multi-Objective Optimal Power Flow Based on Hunger Games Search with Pareto Concept Optimization," Energies, MDPI, vol. 15(22), pages 1-31, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:351:y:2019:i:c:p:204-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.