IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v36y2019i02ns0217595919400013.html
   My bibliography  Save this article

New Constraint Qualifications for S-Stationarity for MPEC with Nonsmooth Objective

Author

Listed:
  • Peng Zhang

    (School of Management, Shanghai University, Shanghai 200444, P. R. China)

  • Jin Zhang

    (Department of Mathematics, Southern University of Science and Technology, Shenzhen, P. R. China)

  • Gui-Hua Lin

    (School of Management, Shanghai University, Shanghai 200444, P. R. China)

  • Xinmin Yang

    (College of Mathematics Science, Chongqing Normal University, Chongqing 401131, P. R. China)

Abstract

This paper considers a mathematical problem with equilibrium constraints (MPEC) in which the objective is locally Lipschitz continuous but not continuously differentiable everywhere. Our focus is on constraint qualifications for the nonsmooth S-stationarity in the sense of the limiting subdifferentials. First, although the MPEC-LICQ is not a constraint qualification for the nonsmooth S-stationarity, we show that the MPEC-LICQ can serve as a constraint qualification for the nonsmooth S-stationarity under some kind of regularity. Then, we extend some new constraint qualifications for nonlinear programs to the considered nonsmooth MPEC and show that all of them can serve as constraint qualifications for the nonsmooth S-stationarity. We further extend these results to the multiobjective case.

Suggested Citation

  • Peng Zhang & Jin Zhang & Gui-Hua Lin & Xinmin Yang, 2019. "New Constraint Qualifications for S-Stationarity for MPEC with Nonsmooth Objective," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(02), pages 1-16, April.
  • Handle: RePEc:wsi:apjorx:v:36:y:2019:i:02:n:s0217595919400013
    DOI: 10.1142/S0217595919400013
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595919400013
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595919400013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jane J. Ye, 2011. "Necessary Optimality Conditions for Multiobjective Bilevel Programs," Mathematics of Operations Research, INFORMS, vol. 36(1), pages 165-184, February.
    2. Lei Guo & Gui-Hua Lin, 2013. "Notes on Some Constraint Qualifications for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 600-616, March.
    3. Lei Guo & Gui-Hua Lin & Jane J. Ye, 2013. "Second-Order Optimality Conditions for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 33-64, July.
    4. Jane J. Ye & Jin Zhang, 2014. "Enhanced Karush–Kuhn–Tucker Conditions for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 777-794, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shisen Liu & Xiaojun Chen, 2023. "Lifted stationary points of sparse optimization with complementarity constraints," Computational Optimization and Applications, Springer, vol. 84(3), pages 973-1003, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yogendra Pandey & S. K. Mishra, 2018. "Optimality conditions and duality for semi-infinite mathematical programming problems with equilibrium constraints, using convexificators," Annals of Operations Research, Springer, vol. 269(1), pages 549-564, October.
    2. Mengwei Xu & Jane J. Ye, 2020. "Relaxed constant positive linear dependence constraint qualification and its application to bilevel programs," Journal of Global Optimization, Springer, vol. 78(1), pages 181-205, September.
    3. Peng Zhang & Jin Zhang & Gui-Hua Lin & Xinmin Yang, 2018. "Constraint Qualifications and Proper Pareto Optimality Conditions for Multiobjective Problems with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 763-782, March.
    4. Alberto Ramos, 2019. "Two New Weak Constraint Qualifications for Mathematical Programs with Equilibrium Constraints and Applications," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 566-591, November.
    5. Yogendra Pandey & Shashi Kant Mishra, 2016. "Duality for Nonsmooth Optimization Problems with Equilibrium Constraints, Using Convexificators," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 694-707, November.
    6. Nguyen Huy Chieu & Gue Myung Lee, 2014. "Constraint Qualifications for Mathematical Programs with Equilibrium Constraints and their Local Preservation Property," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 755-776, December.
    7. Jane J. Ye & Jin Zhang, 2014. "Enhanced Karush–Kuhn–Tucker Conditions for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 777-794, December.
    8. Shisen Liu & Xiaojun Chen, 2023. "Lifted stationary points of sparse optimization with complementarity constraints," Computational Optimization and Applications, Springer, vol. 84(3), pages 973-1003, April.
    9. Lei Guo & Jin Zhang & Gui-Hua Lin, 2014. "New Results on Constraint Qualifications for Nonlinear Extremum Problems and Extensions," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 737-754, December.
    10. Balendu Bhooshan Upadhyay & Arnav Ghosh, 2023. "On Constraint Qualifications for Mathematical Programming Problems with Vanishing Constraints on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 1-35, October.
    11. Giorgio, 2019. "On Second-Order Optimality Conditions in Smooth Nonlinear Programming Problems," DEM Working Papers Series 171, University of Pavia, Department of Economics and Management.
    12. Vivek Laha & Harsh Narayan Singh, 2023. "On quasidifferentiable mathematical programs with equilibrium constraints," Computational Management Science, Springer, vol. 20(1), pages 1-20, December.
    13. Boris S. Mordukhovich & Nguyen Mau Nam & Hung M. Phan, 2012. "Variational Analysis of Marginal Functions with Applications to Bilevel Programming," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 557-586, March.
    14. Mengwei Xu & Jane Ye & Liwei Zhang, 2015. "Smoothing augmented Lagrangian method for nonsmooth constrained optimization problems," Journal of Global Optimization, Springer, vol. 62(4), pages 675-694, August.
    15. Chen, Wenyi & Kucukyazici, Beste & Saenz, Maria Jesus, 2019. "On the joint dynamics of the economic and environmental performances for collective take-back systems," International Journal of Production Economics, Elsevier, vol. 218(C), pages 228-244.
    16. Gaoxi Li & Zhongping Wan, 2018. "On Bilevel Programs with a Convex Lower-Level Problem Violating Slater’s Constraint Qualification," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 820-837, December.
    17. Andreani, R. & Júdice, J.J. & Martínez, J.M. & Martini, T., 2016. "Feasibility problems with complementarity constraints," European Journal of Operational Research, Elsevier, vol. 249(1), pages 41-54.
    18. Max Bucher & Alexandra Schwartz, 2018. "Second-Order Optimality Conditions and Improved Convergence Results for Regularization Methods for Cardinality-Constrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 383-410, August.
    19. Thai Doan Chuong, 2020. "Optimality conditions for nonsmooth multiobjective bilevel optimization problems," Annals of Operations Research, Springer, vol. 287(2), pages 617-642, April.
    20. Kerstin Dächert & Sauleh Siddiqui & Javier Saez-Gallego & Steven A. Gabriel & Juan Miguel Morales, 2019. "A Bicriteria Perspective on L-Penalty Approaches – a Corrigendum to Siddiqui and Gabriel’s L-Penalty Approach for Solving MPECs," Networks and Spatial Economics, Springer, vol. 19(4), pages 1199-1214, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:36:y:2019:i:02:n:s0217595919400013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.