IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v32y2015i06ns0217595915500505.html
   My bibliography  Save this article

Minimizing Makespan in Permutation Flow Shop Scheduling with Proportional Deterioration

Author

Listed:
  • Na Yin

    (Department of Mathematics, Shanghai University, Shanghai 200444, China†School of Science, Shenyang Aerospace University, Shenyang 110136, China)

  • Liying Kang

    (Department of Mathematics, Shanghai University, Shanghai 200444, China)

Abstract

The n-job and m-machine permutation flow shop scheduling problem with a proportional deterioration is considered in which all machines process the jobs in the same order, i.e., a permutation schedule. A proportional deterioration means that the job deterioration as an increasing function that is proportional to a linear function of time. The objective is to minimize the makespan, i.e., the maximum completion time. When some dominant relationships between m − 1 machines can be satisfied, we show that some special cases of the problem can be polynomial solvable. For the general case, we also propose a heuristic algorithm and give the computational experiments.

Suggested Citation

  • Na Yin & Liying Kang, 2015. "Minimizing Makespan in Permutation Flow Shop Scheduling with Proportional Deterioration," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(06), pages 1-12, December.
  • Handle: RePEc:wsi:apjorx:v:32:y:2015:i:06:n:s0217595915500505
    DOI: 10.1142/S0217595915500505
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595915500505
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595915500505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guiyi Wei & Yong Qiu & Min Ji, 2014. "Scheduling With Position-Based Deteriorating Jobs And Multiple Deteriorating Rate-Modifying Activities," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 31(01), pages 1-12.
    2. Chuan-Li Zhao & Heng-Yong Tang, 2011. "Single Machine Scheduling With Linear Deteriorating Jobs Under Predictive Disruption," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 28(03), pages 419-429.
    3. Chin-Chia Wu & Wen-Chiung Lee & Yau-Ren Shiau, 2011. "A Single-Machine Deteriorating Job Scheduling Problem With A Non-Regular Criterion," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 28(03), pages 349-359.
    4. Sun, Lin-Hui & Sun, Lin-Yan & Wang, Ming-Zheng & Wang, Ji-Bo, 2012. "Flow shop makespan minimization scheduling with deteriorating jobs under dominating machines," International Journal of Production Economics, Elsevier, vol. 138(1), pages 195-200.
    5. Wang, Ling & Sun, Lin-Yan & Sun, Lin-Hui & Wang, Ji-Bo, 2010. "On three-machine flow shop scheduling with deteriorating jobs," International Journal of Production Economics, Elsevier, vol. 125(1), pages 185-189, May.
    6. Cheng, T.C.E. & Yang, Suh-Jenq & Yang, Dar-Li, 2012. "Common due-window assignment and scheduling of linear time-dependent deteriorating jobs and a deteriorating maintenance activity," International Journal of Production Economics, Elsevier, vol. 135(1), pages 154-161.
    7. Sun, Linhui & Sun, Linyan & Cui, Kai & Wang, Ji-Bo, 2010. "A note on flow shop scheduling problems with deteriorating jobs on no-idle dominant machines," European Journal of Operational Research, Elsevier, vol. 200(1), pages 309-311, January.
    8. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    9. A Kononov & S Gawiejnowicz, 2001. "NP-hard cases in scheduling deteriorating jobs on dedicated machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(6), pages 708-717, June.
    10. Shisheng Li & Baoqiang Fan, 2012. "Single-Machine Scheduling With Proportionally Deteriorating Jobs Subject To Availability Constraints," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 29(04), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue Huang & Na Yin & Wei-Wei Liu & Ji-Bo Wang, 2020. "Common Due Window Assignment Scheduling with Proportional Linear Deterioration Effects," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(01), pages 1-15, January.
    2. Xuejun Hu & Jianjiang Wang & Kaijun Leng, 2019. "The Interaction Between Critical Chain Sequencing, Buffer Sizing, and Reactive Actions in a CC/BM Framework," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(03), pages 1-22, June.
    3. Zhenyou Wang & Cai-Min Wei & Yuan-Yuan Lu, 2016. "Permutation Flow Shop Problem with Shortening Job Processing Times," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-14, August.
    4. Zhenyou Wang & Cai-Min Wei & Yu-Bin Wu, 2016. "Single Machine Two-Agent Scheduling with Deteriorating Jobs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
    2. Li, Gang & Wang, Xiao-Yuan & Wang, Ji-Bo & Sun, Lin-Yan, 2013. "Worst case analysis of flow shop scheduling problems with a time-dependent learning effect," International Journal of Production Economics, Elsevier, vol. 142(1), pages 98-104.
    3. Sun, Lin-Hui & Sun, Lin-Yan & Wang, Ming-Zheng & Wang, Ji-Bo, 2012. "Flow shop makespan minimization scheduling with deteriorating jobs under dominating machines," International Journal of Production Economics, Elsevier, vol. 138(1), pages 195-200.
    4. Lee, Wen-Chiung & Chung, Yu-Hsiang, 2013. "Permutation flowshop scheduling to minimize the total tardiness with learning effects," International Journal of Production Economics, Elsevier, vol. 141(1), pages 327-334.
    5. Zhenyou Wang & Cai-Min Wei & Yuan-Yuan Lu, 2016. "Permutation Flow Shop Problem with Shortening Job Processing Times," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-14, August.
    6. Zhenyou Wang & Cai-Min Wei & Yu-Bin Wu, 2016. "Single Machine Two-Agent Scheduling with Deteriorating Jobs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-17, October.
    7. Zhao, Chuanli & Tang, Hengyong, 2012. "Two-machine flow shop scheduling with deteriorating jobs and chain precedence constraints," International Journal of Production Economics, Elsevier, vol. 136(1), pages 131-136.
    8. Chuanli Zhao & Hengyong Tang, 2016. "Scheduling Deteriorating Jobs with Availability Constraints to Minimize the Makespan," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(06), pages 1-10, December.
    9. Gur Mosheiov & Daniel Oron, 2020. "Scheduling problems with a weight-modifying-activity," Annals of Operations Research, Springer, vol. 295(2), pages 737-745, December.
    10. Andrzej Kozik, 2017. "Handling precedence constraints in scheduling problems by the sequence pair representation," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 445-472, February.
    11. Hongyu He & Yanzhi Zhao & Xiaojun Ma & Zheng-Guo Lv & Ji-Bo Wang, 2023. "Branch-and-Bound and Heuristic Algorithms for Group Scheduling with Due-Date Assignment and Resource Allocation," Mathematics, MDPI, vol. 11(23), pages 1-14, November.
    12. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    13. Chen, Chuen-Lung & Vempati, Venkateswara S. & Aljaber, Nasser, 1995. "An application of genetic algorithms for flow shop problems," European Journal of Operational Research, Elsevier, vol. 80(2), pages 389-396, January.
    14. Solimanpur, M. & Vrat, Prem & Shankar, Ravi, 2004. "A heuristic to minimize makespan of cell scheduling problem," International Journal of Production Economics, Elsevier, vol. 88(3), pages 231-241, April.
    15. Barry B. & Quim Castellà & Angel A. & Helena Ramalhinho Lourenco & Manuel Mateo, 2012. "ILS-ESP: An Efficient, Simple, and Parameter-Free Algorithm for Solving the Permutation Flow-Shop Problem," Working Papers 636, Barcelona School of Economics.
    16. Gupta, Jatinder N.D. & Koulamas, Christos & Kyparisis, George J., 2006. "Performance guarantees for flowshop heuristics to minimize makespan," European Journal of Operational Research, Elsevier, vol. 169(3), pages 865-872, March.
    17. Yu-Jun Zheng & Yi-Chen Du & Wei-Guo Sheng & Hai-Feng Ling, 2019. "Collaborative Human–UAV Search and Rescue for Missing Tourists in Nature Reserves," Interfaces, INFORMS, vol. 49(5), pages 371-383, September.
    18. Wu, Chin-Chia & Lee, Wen-Chiung, 2006. "Two-machine flowshop scheduling to minimize mean flow time under linear deterioration," International Journal of Production Economics, Elsevier, vol. 103(2), pages 572-584, October.
    19. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
    20. Quang Chieu Ta & Jean-Charles Billaut & Jean-Louis Bouquard, 2018. "Matheuristic algorithms for minimizing total tardiness in the m-machine flow-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 617-628, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:32:y:2015:i:06:n:s0217595915500505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.