IDEAS home Printed from https://ideas.repec.org/a/wsi/acsxxx/v15y2012i07ns0219525912500762.html
   My bibliography  Save this article

Distribution Of Producer Size In Globalized Market

Author

Listed:
  • H. FAN

    (Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China)

Abstract

Distribution of producer size in a globalized market is a complex market phenomena, which is affected by the market behavior of consumers such as the loyalty of consumers to producers and the purchasing power of consumers, as well as the trade barriers among countries. In the present paper, in order to study the distribution of producer size in the globalized market, we construct a bipartite network that consists of consumers and producers with community structure. We find that the distribution of producer size in each community in a multi-community network can be projected to that in one-community bipartite network by mapping the globalized market behavior of consumers to an isolated market behavior. The mapped market behavior is dependent on the trade barriers among communities. The distribution of producer size in globalized market is thereby dependent on the mapped loyalty of consumers and the mapped growing rate of purchasing power. Furthermore, simulation results show that the distribution of producer size differs community by community. It follows the power-law distribution if both the mapped loyalty of consumers and growing rate are high.

Suggested Citation

  • H. Fan, 2012. "Distribution Of Producer Size In Globalized Market," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 15(07), pages 1-24.
  • Handle: RePEc:wsi:acsxxx:v:15:y:2012:i:07:n:s0219525912500762
    DOI: 10.1142/S0219525912500762
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219525912500762
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219525912500762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John H. Miller & Scott E. Page, 2007. "Social Science in Between, from Complex Adaptive Systems: An Introduction to Computational Models of Social Life," Introductory Chapters, in: Complex Adaptive Systems: An Introduction to Computational Models of Social Life, Princeton University Press.
    2. John H. Miller & Scott E. Page, 2007. "Complexity in Social Worlds, from Complex Adaptive Systems: An Introduction to Computational Models of Social Life," Introductory Chapters, in: Complex Adaptive Systems: An Introduction to Computational Models of Social Life, Princeton University Press.
    3. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew W. Bausch, 2014. "Evolving intergroup cooperation," Computational and Mathematical Organization Theory, Springer, vol. 20(4), pages 369-393, December.
    2. Gräbner, Claudius, 2016. "From realism to instrumentalism - and back? Methodological implications of changes in the epistemology of economics," MPRA Paper 71933, University Library of Munich, Germany.
    3. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    4. Situngkir, Hokky & Lumbantobing, Andika Bernad, 2020. "The Pandemics in Artificial Society: Agent-Based Model to Reflect Strategies on COVID-19," MPRA Paper 102075, University Library of Munich, Germany.
    5. Wolfram Elsner, 2019. "Policy and state in complexity economics," Chapters, in: Nikolaos Karagiannis & John E. King (ed.), A Modern Guide to State Intervention, chapter 1, pages 13-48, Edward Elgar Publishing.
    6. James Caton, 2017. "Entrepreneurship, search costs, and ecological rationality in an agent-based economy," The Review of Austrian Economics, Springer;Society for the Development of Austrian Economics, vol. 30(1), pages 107-130, March.
    7. Brian Heath & Raymond Hill & Frank Ciarallo, 2009. "A Survey of Agent-Based Modeling Practices (January 1998 to July 2008)," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(4), pages 1-9.
    8. Ning Nan & Robert Zmud & Emre Yetgin, 2014. "A complex adaptive systems perspective of innovation diffusion: an integrated theory and validated virtual laboratory," Computational and Mathematical Organization Theory, Springer, vol. 20(1), pages 52-88, March.
    9. Luis R. Izquierdo & Segismundo S. Izquierdo & José Manuel Galán & José Ignacio Santos, 2009. "Techniques to Understand Computer Simulations: Markov Chain Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(1), pages 1-6.
    10. van de Kaa, Geerten & de Bruijn, Hans, 2015. "Platforms and incentives for consensus building on complex ICT systems: The development of WiFi," Telecommunications Policy, Elsevier, vol. 39(7), pages 580-589.
    11. Pluchino, Alessandro & Rapisarda, Andrea & Garofalo, Cesare, 2010. "The Peter principle revisited: A computational study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 467-472.
    12. Christopher S. Ruebeck & Leanne J. Ussher & Jason M. Barr, 2017. "Introduction to the Symposium on Agent-based Modeling," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(2), pages 189-191, March.
    13. Pluchino, Alessandro & Rapisarda, Andrea & Garofalo, Cesare, 2011. "Efficient promotion strategies in hierarchical organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3496-3511.
    14. Changkun Zhao & Ryan Kaulakis & Jonathan H. Morgan & Jeremiah W. Hiam & Frank E. Ritter & Joesph Sanford & Geoffrey P. Morgan, 2015. "Building social networks out of cognitive blocks: factors of interest in agent-based socio-cognitive simulations," Computational and Mathematical Organization Theory, Springer, vol. 21(2), pages 115-149, June.
    15. An, Li, 2012. "Modeling human decisions in coupled human and natural systems: Review of agent-based models," Ecological Modelling, Elsevier, vol. 229(C), pages 25-36.
    16. Held, Fabian P. & Wilkinson, Ian F. & Marks, Robert E. & Young, Louise, 2014. "Agent-based Modelling, a new kind of research," Australasian marketing journal, Elsevier, vol. 22(1), pages 4-14.
    17. Jeannette A. Colyvas & Spiro Maroulis, 2015. "Moving from an Exception to a Rule: Analyzing Mechanisms in Emergence-Based Institutionalization," Organization Science, INFORMS, vol. 26(2), pages 601-621, April.
    18. Rand, William & Rust, Roland T., 2011. "Agent-based modeling in marketing: Guidelines for rigor," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 181-193.
    19. Florian Chávez-Juárez, 2017. "On the Role of Agent-based Modeling in the Theory of Development Economics," Review of Development Economics, Wiley Blackwell, vol. 21(3), pages 713-730, August.
    20. Bier, Vicki & Gutfraind, Alexander, 2019. "Risk analysis beyond vulnerability and resilience – characterizing the defensibility of critical systems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 626-636.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:acsxxx:v:15:y:2012:i:07:n:s0219525912500762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/acs/acs.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.