IDEAS home Printed from https://ideas.repec.org/a/wly/soecon/v72y2005i1p78-97.html
   My bibliography  Save this article

The Causal Effects of Participation in the American Economic Association Summer Minority Program

Author

Listed:
  • Gregory N. Price

Abstract

This article examines whether participation by underrepresented minority groups in the American Economics Association Summer Minority Program (AEASMP) has causal effects on outcomes associated with success as academic economists. We estimate both propensity score weighted and Heckit parameter estimates of (1) the average effect of treatment and (2) the effect of treatment on the treated. Our results, which vary across specifications of potential outcomes and propensity score truncated samples, suggest that AEASMP participation by black American Ph.D. economists has a positive and causal impact on 4 outcomes associated with success as an academic economist. However if the probability of selection into the treatment by the nontreated is similar to that of the treated, the results suggest that AEASMP participation by black American Ph.D. economists has a positive and causal effect on research productivity and in gaining access to research funding.

Suggested Citation

  • Gregory N. Price, 2005. "The Causal Effects of Participation in the American Economic Association Summer Minority Program," Southern Economic Journal, John Wiley & Sons, vol. 72(1), pages 78-97, July.
  • Handle: RePEc:wly:soecon:v:72:y:2005:i:1:p:78-97
    DOI: 10.1002/j.2325-8012.2005.tb00689.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/j.2325-8012.2005.tb00689.x
    Download Restriction: no

    File URL: https://libkey.io/10.1002/j.2325-8012.2005.tb00689.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manski, Charles F, 1990. "Nonparametric Bounds on Treatment Effects," American Economic Review, American Economic Association, vol. 80(2), pages 319-323, May.
    2. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    3. Brian A. Jacob & Lars Lefgren, 2004. "Remedial Education and Student Achievement: A Regression-Discontinuity Analysis," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 226-244, February.
    4. Jacqueline Agesa & Maury Granger & Gregory Price, 1998. "Economics research at historically black colleges and universities: Rankings and effects on the supply of black economists," The Review of Black Political Economy, Springer;National Economic Association, vol. 25(4), pages 41-53, June.
    5. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    6. James Heckman & Justin L. Tobias & Edward Vytlacil, 2001. "Four Parameters of Interest in the Evaluation of Social Programs," Southern Economic Journal, John Wiley & Sons, vol. 68(2), pages 210-223, October.
    7. Scott, Loren C & Mitias, Peter M, 1996. "Trends in Rankings of Economics Departments in the U.S.: An Update," Economic Inquiry, Western Economic Association International, vol. 34(2), pages 378-400, April.
    8. Laband, David N & Piette, Michael J, 1994. "The Relative Impacts of Economics Journals: 1970-1990," Journal of Economic Literature, American Economic Association, vol. 32(2), pages 640-666, June.
    9. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    10. James Heckman & Justin L. Tobias & Edward Vytlacil, 2001. "Four Parameters of Interest in the Evaluation of Social Programs," Southern Economic Journal, John Wiley & Sons, vol. 68(2), pages 210-223, October.
    11. Howard Wachtel, 2000. "How the National Science Foundation Funds Research in Economics," Challenge, Taylor & Francis Journals, vol. 43(5), pages 20-30, September.
    12. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    13. Horowitz, Joel L. & Mammen, Enno, 2002. "Nonparametric estimation of an additive model with a link function," SFB 373 Discussion Papers 2002,63, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    14. Robert M. Feinberg & Gregory N. Price, 2004. "The Funding of Economics Research: Does Social Capital Matter for Success at the National Science Foundation?," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 245-252, February.
    15. Jacqueline Agesa & Maury Granger & Gregory N. Price, 2000. "Economics Faculty Research at Teaching Institutions: Are Historically Black Colleges Different?," Southern Economic Journal, John Wiley & Sons, vol. 67(2), pages 427-447, July.
    16. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    17. Michael Lechner, 1999. "Nonparametric bounds on employment and income effects of continuous vocational training in East Germany," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 1-28.
    18. Michael A. Leeds, 1992. "Who Benefits from Affirmative Action? The Case of the AEA Summer Minority Program 1986-1990," Journal of Economic Perspectives, American Economic Association, vol. 6(2), pages 149-156, Spring.
    19. Joel L. Horowitz & Enno Mammen, 2002. "Nonparametric estimation of an additive model with a link function," CeMMAP working papers CWP19/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Susan M. Collins, 2000. "Minority Groups in the Economics Profession," Journal of Economic Perspectives, American Economic Association, vol. 14(2), pages 133-148, Spring.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    2. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    3. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    4. Gregory Price, 2007. "Would Increased National Science Foundation Research Support To Economists At Historically Black College And Universities Increase Their Research Productivity?," The Review of Black Political Economy, Springer;National Economic Association, vol. 34(1), pages 87-109, June.
    5. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    6. Jochen Kluve & Boris Augurzky, 2007. "Assessing the performance of matching algorithms when selection into treatment is strong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(3), pages 533-557.
    7. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    8. Jeffrey Smith & Arthur Sweetman, 2016. "Viewpoint: Estimating the causal effects of policies and programs," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 871-905, August.
    9. Guo, Shenyang & Barth, Richard P. & Gibbons, Claire, 2006. "Propensity score matching strategies for evaluating substance abuse services for child welfare clients," Children and Youth Services Review, Elsevier, vol. 28(4), pages 357-383, April.
    10. Joseph Hotz, V. & Imbens, Guido W. & Mortimer, Julie H., 2005. "Predicting the efficacy of future training programs using past experiences at other locations," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 241-270.
    11. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    12. Michael Lechner & Blaise Melly, 2007. "Earnings Effects of Training Programs," University of St. Gallen Department of Economics working paper series 2007 2007-28, Department of Economics, University of St. Gallen.
    13. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    14. Kaitlin Anderson & Gema Zamarro & Jennifer Steele & Trey Miller, 2021. "Comparing Performance of Methods to Deal With Differential Attrition in Randomized Experimental Evaluations," Evaluation Review, , vol. 45(1-2), pages 70-104, February.
    15. Zhao, Zhong, 2008. "Sensitivity of propensity score methods to the specifications," Economics Letters, Elsevier, vol. 98(3), pages 309-319, March.
    16. Michael Lechner, 2004. "Sequential Matching Estimation of Dynamic Causal Models," University of St. Gallen Department of Economics working paper series 2004 2004-06, Department of Economics, University of St. Gallen.
    17. Jose C. Galdo & Jeffrey Smith & Dan Black, 2008. "Bandwidth Selection and the Estimation of Treatment Effects with Unbalanced Data," Annals of Economics and Statistics, GENES, issue 91-92, pages 189-216.
    18. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    19. Jenny C. Aker & Marcel Fafchamps, 2015. "Mobile Phone Coverage and Producer Markets: Evidence from West Africa," The World Bank Economic Review, World Bank, vol. 29(2), pages 262-292.
    20. Committee, Nobel Prize, 2021. "Answering causal questions using observational data," Nobel Prize in Economics documents 2021-2, Nobel Prize Committee.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:soecon:v:72:y:2005:i:1:p:78-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2325-8012 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.